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Exlitiartsincsincti
Never has the CMES8 ventured so far east. Never before has the CMES8
left the mainland. And never have we had a meeting more memorable than
our visit to Memorial University in St. John's, Newfoundland. Special touches
of Newfoundland hospitality have indelibly influenced those who were
ritually initiated as honorary "SCREECHERS".

We are especially appreciative for the eucellen t representation en our
'behalf by Ed Williams. As our local organizer, Ed was instrumental in
arranging the most enjoyable social agenda as well as the facilities for
our professional agenda at Memorial University.

David Wheeler, one of the group instrumental in founding the CMESS,
announced that he was stepping down as chairman of the CHESS. David has
agreed to join the executive as past chairman in order that we may
continue to benefit from his advice and interest in the group.

The major lectures were presented by Ross Finney and Alan Schoenfeld.
-Ross Finney kindly offered to present a lecture when the previously
arranged speaker withdrew at the last minute. Alan Schoenfeld delivered a
joint lecture to the CMS and the CMES8.

Charles Verhille
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Preface
Canadian Mathematics Education Study Group

Groupe canadien d'etude en didactique des mathematiques

The Study Group held its tenth annual meeting at Memorial
University from June 8 to 12, 1986. Travelling distance and CAUT
censure made this much the smallest of the Study Group's
meetings. But the thirty-one participants managed to assemble a
lively programme and to generate a comfortable working
atmosphere.

Working Groups, as always the mainstay of the programme,
this year covered Affective aspects of problem solving (led by
Frances Rosamond, San Diego, and Peter Taylor, Queen's). The
problem of rigour in mathematics teaching (led by Gila Hanna,
OISE, and Lars Jansson, Manitoba), Microcomputers in teacher
education (led by Charles,Verhille, UNB) and The role of the
microcomputer in promoting statistical thinking (led by Claude
Gaulin, Laval and Lionel Mendoza, Memorial). In spite of the
small numbers, each group managed to funcation and, miraculously,
to flourish. It is worth repeating here, though it has been said
in reports of earlier meetings, that the opportunity for a group
to work for 9 hours on a single topic contributes powerfully to
the productivity of the meetings and to the atmosphere of
collaboration rather than competition that prevades them.

The principal guest speaker, Alan Schoenfeld (B.erkley),
threw himself into all aspects of the conference and delivered a
dynamic address under the modest title of Some thought on problem
solving. The lecture, jointly sponsored by the CMS Education
Committee, gave extremely good value, being full of practical
commonsense, critical analyses, cogent research results, and
provocative speculation. Ross Finney (MIT), generously stepping
in at the last minute to replace an advertised speaker, gave
particpants several glimpses of the material collected by UMAP
and COMAP, Harold Paddock (Memorial) refreshed the meeting with a
witty and wide-ranging talk given from the prospective of a
linguist and a poet on Natural language and mathematics in human
evolution.

Other sessions included reports on the Second International
Mathematics Study and the ICMI study on the impact of computers
and informatics on the teaching of mathematics. Claude Janvier
(UQAM) reviewed some of the research on representation, untaken
by him and his colleagues. Several members gave brief surveys of
the research activity in mathematics education in their
provinces, and the final evening was rounded off with a
dramatised reading of extracts from Lakatos' Proofs and
ref.t.,ations.

The local organizer, Ed Williams, by adding a banquet, a bus
trip and (opportunistically) a run up Signal Hill, ensured that
all the participants came away with pleasant memories of the host
province, its capital, and its university.

7
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IN MEMORIAM DIETER LUNIENBEIN

I would like us to use this opportunity to pause for a
minutes in order to pay tribute to one of our very dear
colleagues: Dieter Lunkenbein, who was still among us at our
conference last year and who died on last September 11th.

I had the chance to know Dieter and to start working with
him shortly after his arrival to Canada in 1968, at the time he
accepted a position as a research assistant to Professor Zoltan
P. Dienes in Sherbrooke, Que. He was initially supposed to stay
a few years in our country and then to return to Germany, his
native land. But what happened is that he and his family decided
to stay and live in Sherbrooke, where he had spent the last 17
years of his life. After taking his Ph.D. in mathematics
education at Laval in the early 70s, he became the inspiring
leader of a group of mathematics educators at the University of
Sherbrooke, as well as a very active collaborator to the Quebec
Ministry of Education and to the three major Quebec mathematics
teachers associations.

In 1977, Dieter Lunkenbein was present at Kingston, Ontario,
when the meeting that led to the creation of our Study Group took
place. Since then he has been a regular participant to our
meetings, making a remarkable contribution as a leader or a
collaborator of many groups, particularly those on the
deirelopment of geometrical thinking at the Elementary level, on
research in mathematics education and on children's "errors" in
mathematics.

In 1979, Dieter received the "Abel Gauthier Prize" in
recognition for his exceptional contribution to mathematics
education in Quebec. Besides his involvement in Canada, Dieter
has also been quite active at the international level during the
last ten years. In 1982, he was elected President of the
"Commission Internationale pour l'Etude et l'Amelioration de
l'Enseignement de la Mathematique" in Europe. But unfortunately,
he had to resign from that position before the end of his
mandate, after having gone through a heart operation.

Last year, Dieter had apparently recovered so well that in
June he accepted a position as assistant dean of the Faculty of
Education at the University of Sherbrooke, and that in July he
participated in an international conference in Bielefeld,
Germany. But two months later, alas, we heard the tragic news of
his death at 48 years of age, at an age he still had so much to
offer and to contribute.

To all those who have known Dieter Lunkenbein, his death
means a great loss. On the one hand, we have lost a man with a
rich personality and with.remarkable human qualities: Dieter was
friendly, generous, modest, and he had a great respect for
others. On the other hand, we have lost a colleague with
outstanding professional qualities: Dieter was a hard worker,
with high standards of rigor and integrity, ever searching for
truth and strongly dedicated to his work in mathematics
education. Let us have good thoughts for him!

Claude Gaulin 8
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Confessions of an Accidental Theorist

David Wheeler had both theoretical and pragmatic reasons for inviting

me to write this article. On the theoretical side, he noted that my ideas on

"understanding and teaching the nature of mathematical thinking" have taken

some curious twists and turns over the past decade. Originally inspired by

Polya's ideas and intrigued by the potential for implementing them using the

tools of artificial intelligence and information-processing psychology, I set out to

develop prescriptive models of heuristic problem solving -- models that included

descriptions of how, and when, to use Polya's strategies. (In moments of verbal

excess I was heard to say that my research plan was to "understand how

competent problem solvers solve problems, and then find a way to cram that

knowledge down students' throats.") Catch me talking today, and you'll hear

me throwing about terms like metacognition, belief systems, and "culture as the

growth medium for cognition;" there's little or no mention of prescriptive models.

What happened in between? How were various ideas conceived, developed,

modified, adapted, abandoned, and sometimes reborn? It might be of interest,

suggested David, to see where the ideas came from. With regard to pragmatic

issues, David was blunt. Over the past decade I've said a lot of stupid things.

To help keep others from re-inventing square theoretical or pedagogical

wheels, or to keep people from trying to ride some of the square wheels I've

developed, he suggested, it might help if I recanted in public. So here goes.. .

The story begins in 1974, when I tripped over Polya's marvelous little

volume How to Solve lt. The book was a tour de force, a charming exposition

of the problem solving introspections of one of the century s foremost

11
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mathematicians. (If you don't own a copy, you should.) In the spirit of

Descartes, who had, three hundred years earlier, attempted a similar feat in the

Rules for the Direction of the Mind, nye examined his own thoughts to find

useful patterns of problem solving behavior. The result was a general

description of problem solving processes: a four-phase model of problem

solving (understanding the problem, devising a plan, carrying out the plan,

looking back), the details of which included a range of problem solving

heuristics, or rules of thumb for making progress on difficult problems. The book

and Fiolya's subsequent elaborations of the heuristic theme (in Mathematics

and Plausible ReasonThg, and Mathematical Discovery) are brilliant pieces of

insight and mathematical exposition.

A young mathematician only a few years out of rraduate school, I was

completely bowled over by the book. Page after page, Palya described the

problem solving techniques that he used. Though I hadn't been taught them, I

too used those techniques; I'd picked them up then pretty much by accident, by

virtue of having solved thousands of problems during my mathematical career

(That is, I'd been "trained" by the discipline, picking up bits and pieces of

mathematical thinking as I developed). My experience was hardly unique, of

course. In my excitement I joined thousands of mathematicians who, in reading

POlya's works, had the same thrill of recognition. In spirit I enlisted in the army

of teachers who, inspired by POlya's vision, decided to focus on teaching their

students to think rrathe7ratically instead of focusing merely on the mastery of

mathematical subject matter.

more r,iccurate, I thought about enlisting in that army. Excited by

rn; I ciought out some problem-solving experts, mathematics faculty

12
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who coached students for the Putnam exam or for various Olympiads. Their

verdict was unanimous and unequivocal: Polya was of no use for budding

young problem-solvers. Students don't learn to solve problems by rearing

Polya's books, they said. In their experience, students learned to solve

problems by (starting with raw talent and) solving lots of problems. This was

troubling, so I looked elsewhere for (either positive or negative) evidence. As

noted above, I was hardly the first POlya enthusiast: By the time I read How to

So lie It the math-ed literature was chock full of studies designed to teach

problem - solving via heuristics. Unfortunately, the results -- whether in first

grade, algebra, calculus, or number theory, to name a few -- were all

depressingly the same, and confirmed the statements of the Putnam and

Olympiad trainers. Study after study produced "promising" results, where

teacher and students alike were happy with the instruction (a typical

phenomenon when teachers have a vested interest in a new program) but

where there was at best marginal evidence (if any!) of improved problem

solving performance. Despite all the enthusiasm for the approach, there was no

clear evidence that the students had actually learned more as a result of their

heuristic instruction, or that they had learned any general problem solving skills

that transferred to novel situations.

Intrigued by the contradiction -- my gut reaction was still that Pcilya was

on to something significant -- I decided to trade in my mathernwician's cap for a

mathematics educator's and explore the issue. Well, not exactly a straight

mathematics educator's: as I said above, math ed had not produced much that

was encouraging on the problem solving front. I turned to a different field, in the

hope of blending its insights with Polya's and those of mathematics educators.

13
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The first task I faced was to figure out why Polya's strategies didn't work.

If I succeeded in that, the next task was to make them work -- to characterize the

strategies so that students could learn to use them. The approach I took was

inspired by classic problem solving work in cognitive science and artificial

intelligence, typified by Newell and Simon's (1972) Human Problem Solving. In

the book Newell and Simon describe the genesis of a computer program called

General Problem Solver (GPS), which was developed to solve problems in

symbolic logic, chess, and " cryptarithmetic" (a puzzle domain similar to

cryptograms, but with letters standing for numbers instead of letters). GPS

played a decent game of chess, solved cryptarithmetic problems fairly well. and

managed to prove almost all of the first 50 theorems in Russell and Whitehead's

Principia Mathematica -- all in all, rather convincing evidence that its problem

solving strategies were pretty solid.

Where did those strategies come from? In short, they came from detailed

observations of people solving problems. Newell, Simon, and colleagues

recorded many people's attempts to solve problems in chess, cryptarithmetic,

and symbolic logic. They then explored those attempts in detail, looking for

uniformities in the problem solvers' behavior. If they could find those

regularities in people's behavior, describe those regularities precisely (i.e. as

computer programs), and get the programs to work (i.e. to solve problems) then

they had pretty good evidence that the strategies they had characterized were

useful. As noted above, they succeeded. Similar techniques had been used in

other areas: for example, a rather simple program called SAINT (for Symbolic

Automatic Thaegrator) solved indefinite integrals with better facility than most

M.I.T. freshmen. In all such cases, Al produced a set of prescriptive procedures
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-- problem solving methods described in such detail that a machine, following

their instructions, could obtain pretty spectacular results.

It is ironic that no one had thought to do something similar for human

problem solving. The point is that one could turn the man-machine metaphcr

back on itself. Why not make detailed observations of expert human problem

solvers, with an cye towards abstracting regularities in their behavior --

regularities that could be codified as prescriptive guides to human problem

solving? No slight to students was intended by this approach, nor was there

any thought of students as problem solving machines. Rather, the idea was to

pose the problem from a cognitive science perspective: "What level of detail is

needed so that students.can actually use the strategies one believes to be

useful?" Methodologies for dealing with this question were suggested by the

methodologies used in artificial intelligence. One could make detailed

observations of individuals solving problems, seek regularities in their problem

solving behavior, and try to characterize those regularities with enough

precision, and in enough detail, so that students could take those

characterizations as guidelines for problem solving. That's what I set out to do.

The detailed studies of problem solving behavior turned up some results

pretty fast. In particular, they quickly revealed one reason that attempts to teach

problem solving via heuristics had failed. The reason is that POlya's heuristic

strategies weren't really coherent strategies at all. POlya's characterizations

were broad and descriptive, rather than prescriptive. Professional

mathematicians could indeed recognize them (because they knew them, albeit

implicitly), but novice problem solvers could hardly use them as guides to

productive problem solving behavior. In short, Palya's characterizations were

15
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labels under which families of related strategies were subsumed. There isn't

much room for exposition here, but one example will give the flavor of the

analysis. The basic idea is that when you look closely at any single heuristic

"strategy," it explodes into a dozen or more similar, but fundamentally different,

problem-solving techniques. Consider a typical strategy, "examining special

cases:"

To better understand an unfamiliar problem, you may wish to

exemplify the problem by considering various special cases. This

may suggest the direction of, of perhaps the plausibility of, a

solution.

Now consider the solutions to the following three problems.

emblem 1. Determine a formula in closed form for the series

n

k/(k+1)!
1.1

Ermtkal. Let P(x) and Q(x) be polynomials whose coefficients are the

same but in "backwards order:"

P(x) = ao + ai x + a2x2 + anxn , and

Q(x) = an + an..i x + an.2x2 + aoxn.

What is the relationship between the roots of P(x) and Q(x)? Prove your

answer.

16
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Problern_3. Let the real numbers ao and al be given. Define the

sequence 'tan} by

an = 1/2 (an -2 + an -1) for each n a 2.

Does the sequence (an) converge? If so, to what value?

I'll leave the details of the solutions to you. However, the following

observations are important. For problem 1, the special cases that help are

examining what happens when where the integer parameter n takes on the

values 1, 2, 3, .. . in sequence; this suggests a general pattern that can be

confirmed by induction. Yet if you try to use special cases in the same way on

the-second problem, you may get into trouble: Looking at values n=1, 2, 3, .. .

can lead to a wild goose chase. It turns out that the right special cases of P(x)

and Q(x) you to look at for problem 2 are easily factorable polynomials. If, for

example, you consider

P(x) = (2x + 1) (x + 4) (3x - 2),

you will discover that its "reverse," Q, is easily factorable. The roots of the P and

Q are easy to compare, and the result (which is best proved another way) is

obvious. And again, the special cases that simplify the third problem are

different in nature. If you choose the values a0=0 and a1 =1, you can see what

happens for that particular sequence. The pattern in that case suggests what

happens in general, and (especially if you draw the right picture!) leads to a

solution of the original problem.

Each of these problems typifies a large class of problems, and

exemplifies a different special cases strategy. We have:

17
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Strategy 1. When dealing with problems in which an integer parameter n

plays a prominent role, it may be of use to examine values of n=1, 2, 3, . .

. in sequence, in search of a pattern.

Strategy 2. When dealing with problems that concern the roots of

polynomials, it may be of use to look at easily factorable polynomials.

Strategy 3. When dealing with problems that concern sequences or

series that are constructed recursively, it may be of use to try initial values

of 0 and 1 -- if such choices don't destroy the generality of the processes

under investigation.

Needless to say, these three strategies hardly exhaust "special cases."

At this level of analysis -- the level of analysis necessary for implementing the

strategies -- one could find a cozen more. This is the case for almost all of

Po lya's strategies. In consequence the two dozen or so "powerful strategies" in

How to Solve It are, in actuality, a collection of two or three hundred less

"powerful," but actually usable strategies. The task of teaching problem solving

via heuristics -- my original goat --thus expanded to (1) explicitly identifying the

most frequently used techniques from this !ong list, (2) characterizing them in

sufficient detail so that students could use them, and (3) providing the

appropriate amount and degree of training.

[Warning: It is easy to underestimate both the amount of detail and

training that are necessary. For example, to execute a moderately complex

"strategy" like "exploit an easier related problem" with success, you have to (a)

think to use the strategy (non- trivial!); (b) know which version of the strategy to

18
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use; (c) generate appropriate and potentially useful easier related problems;

(d) make the right choice of related problem; (e) solve the problem; and (f) find a

way to exploit its solution to help solve the original problem. Students need

instruction in all of these.]

Well, this approach made progress, but it wasn't good enough. Fleshing

out POlya's strategies did make them implementable, but it revealed a new

problem. An arsenal of a dozen or so powerful techniques may be manageable

in problem solving. But with all the new detail, our arsenal comprised a couple

of hundred problem solving techniques. This caused a new problem, which I'll

introduce with an analogy.

A number of years ago, I deliberately put the problem

r L....0,
J x2 _ 9

as the first problem on a test, to give my studentS a boost as they began the

exam. After all, a quick look at the fraction suggests the substitution u= x2 - 9,

and this substitution knocks the problem off in just a few seconds. 178 students

took the exam. About half used the right substitution and got off to a good start,

as I intended. However, 44 of the students, noting the factorable denominator in

the integrand, used partial fractions to express x/x2-9 in the form [A/x-3 + B/x+3]

-- .;orrect but quite time-consuming. They didn't do too well on the exam. And

17 students, noting the (u2 - a2) form of the denominator, worked the problem

using the substitution x = 3sin0. This too yields the right answer -- but it was

even more time-consuming, and the students wound up so far behind that they

bombed the exam.
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Doing well, then, is based on more than "knowing the subject matter;" it's

based on knowing which techniques to use and when. If your strategy choice

isn't good, you're in trouble. That's the case in techniques of integration, when

there are only a dozen techniques and they're all algorithmic. As we've seen,

heuristic techniques are anything but algorithmic, and they're much harder to

master. In addition, there are hundreds of them -- so strategy selection

becomes even more important a factor in success. My point was this. Knowing

the strategies isn't enough. You've got to know when to use which strategies.

As you might expect by now, the Al metaphor provided the basic

approach. I observed good problem solvers with an eye towards replicating

their heuristic strategy selection. Generalizing what they did, I came up with a

prescriptive scheme for picking heuristics:called a "managerial strategy." It told

the student which strategies to use, and when (unless the student was sum he

had a better idea). Now again, this approach is not quite as silly as it sounds.

Indeed, the seeds of it are in Po lya ("First. You have to understand the

problem."). The students weren't forced to follow the managerial strategy like

little automata. But the strategy suggested that heuristic techniques for

understanding the problem should be used first, planning heuristics next,

exploration heuristics in a particular order (the metric was that the further the

exploration took you from the original problem, the later you should consider it),

and so on. In class we talked about which heuristic technique we might use at

any time, and why. Was the approach reductive? Maybe so. But the bottom line

is that this combination of making the heuristics explicit, and providing a

managerial strategy for students, was gloriously successful.

20
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teachers (and often as researchers) we look at a very narrow spectrum of

student behavior. Generally speaking, we only see what students produce on

tests; that's the product, but focusing on the product leaves the process by

which it evolved largely invisible. (There's a suhstantial difference between

watching a 20-minute videotape of a student working a probiem and reading

the page or two of "solution" that student produced in those 20 minutes. The

difference can be mind boggling.) In class, or in office hours, we have

conversations with the students, but the conversations are directed toward a
goal explaining something the student comes prepared to understand, and

knows is coming. The student is primed for what we have to say. And that's the

point. When we give students a calculus test and there's a max-min problem in

it, students know it's a max-min problem. They've just finished a unit on max-

min problems, and they expect to see a max-min problem on the exam. In other

words, the context tells the students what mathematics to use. We get to see

them at their very best, because (a) they're prepared, and (b) the general

context puts them in the right ballpark and tells them what orocedures to use.

By way of analogy, you don't discover whether kids can speak grammatically (or

think on their feet) when you given them a spelling test, after they've been given

the list of words they'll be tested on. (Even when I taught the problem solving

class, was showing students techniques that they knew were to be used in the

context of the problem solving class. Hence they came to my final prepared to

use those techniques.)

In my office, problems come out of the blue and the context doesn't tell

students what methods are appropriate. The result is that I get to see a very

different kind of behavior. One problem used in my research, for example, is the

following:

22
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Problem 4. Three points are chosen on the circumference of a circle of

radius R, and the triangle with those points as vertices is drawn. What

choice of points results in the triangle with largest possible area? Justify

your answer as well as you can.

Though there are clever solutions to this problem (see below), the fact is

that you can approach it as a standard multivariate max -min problem. Virtually

none of my students (who had finished 3rd-semester calculus, and who knew

more than enough mathematics to knock the problem off) approached it that

way. One particular pair of students had just gotten A's in their 3rd-semester

calculus class, and each had gotten full credit on a comparably difficult problem

on their exam. Yet when they worked on this problem they jumped into another

(and to me, clearly irrelevant) approach altogether, and persisted at it for the full

amount of allotted time. When they ran out of time, I asked them where they

were going with that approach and how it might help them. They couldn't tell

me. That solution attempt is best described as a twenty-minute wild goose

chase.

Most of my videotapes showed students working on problems that they

"knew" enough mathematics to solve. Yet time and time again, students never

got to use their knowledge. They read the problem, picked a direction (often in

just a second or two), and persevered in that direction no matter what. Almost

sixty percent of my tapes are of that nature. But perhaps the most embarrassing

of the tapes is one in which I recorded a student who had taken my problem

solving course the year before.
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There is an elegant solution to Problem 4, which goes as follows.

Suppose the three vertices are A, B, and C. Hold A and B fixed, and ask what

choice of C gives the largest area. It's clearly when the height of the triangle is

maximized when the triangle is isosceles. So the largest triangle roust oe

isosceles. Now you can either maximize isosceles triangles (a one-variable

calculus problem), or finish the argument by contradiction. Suppose the largest

triangle, ABC, isn" equilateral. Then two sides are unequal; say AC # BC. If

that's the case, however, the isosceles triangle with base AB is larger than ABC

-- a contradiction. So ABC must be equilateral.

The student sat down to work the problem. He remembered that we'd

worked it in class the previous year, and that there was an elegant solution. As

a result, he approached the problem by trying to so something clever. In an

attempt to exploit symmetry he changed the problem he was working on

(without acknowledging that this might have serious consequences). Then,

pursuing the goal of a slick solution he missed leads that clearly pointed to a

straightforward solution. He also gave up potentially fruitful approaches that

were cumbersome because "there must be an easier way." In short, a cynic

would argue that he was worse off after my course than before. (That's how I felt

that afternoon.)

In any case, I drew two morals from this kind of experience. The first is

that my course, broad as it was, suffered from the kind of insularity I discussed

above. Despite the fact that I was teaching "general problem solving

strategies," I was getting good results partly because I had narrowed the

context: students knew they were supposed to be using the strategies in class,

and on my tests. If I wanted to affect the students' behavior in a lasting way,
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outside of my classroom, I would have to do something different. (Note: I had

plenty of testimonials from students that my course had "made me a much better

problem solver," "helped me do much better in all of my other courses," and

"changed my life." I'm not really sanguine about any of that.] Second and more

important, I realized that there was a fundamental mistake in the approach I had

taken to teaching problem solving the idea that I could, as I put it so

indelicately in the first paragraph of this paper, cram problem solving

knowledge down my students' throats.

That kind of approach makes a naive and very dangerous assumption

about students and learning. It assumes, in assence, that each student comes

to you as a tabula rasa, that you can write you problem solving "message" upon

that blank slate, and that the message will "take." And it just ain't so. The

students in my problem solving classes were the successes of our system.

They were at .iamilton College, at Rochester, or at Berkeley because they were

good students; they were in a problem solving class (which was known as a

killer) because they liked mathematics and did pretty well at it. They come to

the class with well engrained habits the very habits that have gotten them to

the class in the first place, and accounted for their success. I ignore all of that

(well, not really; but a brief caricature is all I've got room for) and show them

"how to do it right." And when they leave the classroom and are on their own...

well, let's be realistic. How could a semester's worth of training stack up against

an academic lifetime's worth of experience, especially if tne course ignores that

experience? (Think of what it takes to retrain a self-taught musician or tennis

player, rather than than teach one from scratch. Old habits die very very hard, if

they die at all.)
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Well, the point is clear. If you're going to try to affect students'

mathematical problem solving behavior, you'd better understand that behavior.

That effort was the main thrust of what (linear type that I am) ni call phase 2.

Instead of trying to do things to (and with) students, the idea was to understand

what went on in their heads when they tried to do mathematics. Roughly

speaking, the idea was this. Suppose I ask someone to solve some

mathematics problems for me. For the sake of a permanent record, I videotape

the problem solving session (and the person talks out loud as he or she works,

giving me a verbal "trace" as well.). My goal is to understand what the person

did, why he or sheslid.it,.and_how.those actionscontributed to his-ot her

success or failure at solving the problem. Along the way I'm at liberty to ask any

questions I want, give any tests that seem relevant, and perform any

(reasonable) experiments. What do I have to look at, to be reasonably confident

that I've focused on the main determinant of behavior, and on what caused

success or failure?

The details of my answer are xvi+409 pages long. The masochistic

reader may find them, as well as the details of the brief anecdotes sketched

above, in my (1985) Mathematical Problem Solving. In brief, the book

suggested that if you're going to try to make sense of what people do when they

do mathematics, you'd better look at:

A. "Cognitive resources," one's basic knowledge of mathematical facts

and procedures stored in LTM (long term memory.) Most of modern

psychology, which studies what's in a person's head and how that

knowledge is accessed, is relevant here.
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B. Problem solving strategies or heuristics. I've said enough about these.

C. Executive or "Control" behavior. [For the record, this behavior is often

referred to as "metacognition."] I discussed this above as well. It's not

just what you know (A+B above), it's how you use it. The issue in the

book was how to make sense of such things. It's tricky, for the most

important thing in a problem solving session may be something that

doesn't take place -- asking yourself if it's really reasonable to do

something, and thereby forestalling a wild goose chase.

D. Belief systems. I haven/ mentioned these yet, but I will now.

Beliefs have to do with your mathematical weftanschauung, or world

view. The idea is that your sense of what mathematics is all about will

determine how you approach mathematical problems. At the joint CMS/CMESG

meetings in June 1986, Ed Williams told me a story that illustrates this category.

Williams was one of the organizers of a problem solving contest which

contained the folloWing problem:

"Which fits better, a square peg in a round hole or a round peg in a

square hole?"

Since the peg-to-hole ratio is 2/r: (about .64) in the former case and n/4

(about .79) in the latter, the answer is the round peg." (Since the tangents line

up in that case and not in the other, there's double reason to choose that

answer.) It seems obvious that you have to answer the question by invoking a
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computation. How else, except with analytic support, can you defend your

claim?

It may be obvious to us that an analytic answer is called for, but it's not at

all obvious to students. More than 300 stuc 's the cream of the crop

worked the problem. Most got the right answe , justifying it on the basis of a

rough sketch. Only four students out of more than 300 justified their answer by

comparing areas. (I can imagine a student saying "you just said to say which fit

better. You didn't say to prove it.") Why? I'm sure the students could have

done the calculations. They didn't think to, because they didn't realize that

justifying one's answer is a necessary part of doing mathematics (from the

Mathematician's point of view).

For the sake of argument, I'm going to state the students' point of view. (as

described in the previous paragraph) in more provocative form, as a belief:

Belief 1; If you're asked your opinion about a mathematical question, it

suffices to give your opinion, although you might back it up with evidence

if that evidence is readily available. Formal proofs or justifications aren't

necessary, unless you're specifically asked for them and that's only

because you have to play by the rules of the game.

We've seen the behavioral corollary of this belief, as Williams described it.

Unfortunately, this belief has lots of company. Here are two of its friends, and

their behavioral corollaries.
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Belief 2., All mathematics problems can be solved in ten minutes or less, if

you understand the material. Corollary: students give up after ten minutes

of work on a "problem.")

Belief 3; Only geniuses are capable of discovering, creating, and

understanding mathematics. Corollary: students expect to take their

mathematics passively, memorizing without hope or expectation of

understanding.

An anecdote introduces one last belief. A while ago I gave a talk

describing my research on problem solving to a group of very talented

undergraduate science majors at Rochester. I asked the students to solve

Problem 5, given in Fig. 1. The students, working as a group, generated a

correct proof. I wrote the proof (Fig. 2) on the board. A few minutes later I gave

the students Problem 6, given in Fig. 3.
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In the figure below, the circle with center C is
tangent to the top and bottom lines at the points
P and 0 respectively.

a. Prove that PV = QV.

b. Prove that the line segment CV bisects angle PVQ.

-- Fig. 1 --
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Draw in the line segments CP, CO, and CV. Since CP and CQ are
radii of circle C, they are equal; since P and Q are points of tangency,
angles CPV and CQV are right angles. Finally since CV=CV, triangles

.CPV and CQV are congruent.

a. Corresponding parts of congruent triangles are congruent, so
PV = QV.

b. Corresponding parts of congruent triangles are congruent, so
angle PVC = angle QVC. Thus CV bisects angle PVQ.

Fig. 2 --
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You are given two intersecting straight lines and
a point P marked on one of them, as in the figure
below. Show how to construct, using straightedge
and compass, a circle that is tangent to both lines
and that has the point P as its point of tangency to
the top line.

-- Fig. Z:
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Students.came to be board and made the following conjectures, in order:

a. Let 0 be the point on the bottom line such that QV = PV. The center of

the desired circle is the midpoint of line segment P0. (Fig. 4a).

b. Let A be the segment of the arc with vertex V, passing through P, and

bounded by the two lines. The center of the desired circle is the

midpoint of the arc A. (Fig. 4b).

c. Let R be the point on the bottom line that intersects the line segment

perpendicular to the top line at P. The center of the desired circle is the

midpoint of line segment PR. (Fig. 4c).

d. Let Li be the line segment perpendicular to the top line at P, and L2

the bisector of the angle at V. The center of the desired circle is the

point of intersection of Li and L2. (Fig. 4d).
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(a)

(c)

_ Fig. 4

(b)

Students' conjectured solutions
(Short horizontal lines denote midpoints.)

(d)

The proof that the students had generated which both provides the

answer and rules out conjectures a, b, and c -- was still on the board. Despite

this, they argued for more than ten minutes about which construction was right.

The argument was on purely empirical grounds (that is, on the grounds of which

construction looked right), and it was not resolved. How could they have this

argument, with the proof bo I on the board? I believe that this scene could only

take place if the students simply didn't see the proof problem as being relevant

to the construction problem. Or again in provocative form,
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Belief 4; Formal mathematics, and proof, have nothing to do with

discovery or invention. Corollary: the results of formal mathematics are

ignored when students work discovery problems.

Since we're in "brief survey mode," I don't want to spend too much time

on beliefs per se. I think the point is clear. :i you want to understand students'

mathematical behavior, you have to know more than what they "know." These

students "knew" plane geometry, and how to write proofs; yet they ignored that

knowledge when working construction problems. Understanding what went. on

in their heads was (and is) tricky business. As I said, that was the main thrust of

phase 2.

But enough cf that; we're confronted with a real dilemma. The behavior I

just described turns out to be almost universal. Undergraduates at Hamilton

College, Rochester, and Berkeley all have much the same mathematical world

view, and the (U.S.) National Assessments of Educational Progress indicate

that the same holds for high school students around the country. How in the

world did those students develop their bizarre sense of what mathematics is all

about?

The answer, of course, lies in the students' histories. Beliefs about

mathematics, like beliefs about anything else -- race, sex, and politics, to name

a few -- are shaped by one's environment. Your develop your sense of what

something is all about (be that something mathematics, race, sex, or politics) by

virtue of your experiences with it, within the context of your social environment.

You may pick up your culture's values, or rebel against them -- but you're

sheipet: by them just the same.
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Mathematics is a formal discipline, to which you're exposed mostly in

schools. So if you want to see where kids' views about mathematics are

shaped, the first place to go is into mathematics classrooms. I packed up my

videotape equipment, and off I went. Some of the details of what I saw, and

how I interpreted it, are given in the in-press articles cited in the references. A

thumbnail sketch of some of the ideas follows.

Borrowing a term from anthropologists, what I observed in 'mathematics

classes was the practice of schooling the day-to-day rituals and interactions

that take place in mathematics classes, and (de facto) define what it is to do

mathematics. One set of practices las to do with homewOrk and testing. The

name of the game in school mathematics is "mastery:" Students are supposed

to get their facts and procedures down cold. That means that most homework

problems are trivial variants of things the students have already learned. For

example, one "required" construction in plane geometry (which students

memorize) it to construct a line through a given point, parallel to a given. line. A

homework assionment given a few days later contained the following problem:

Given a point on a side of a triangle, construct a line through that point parallel

to the base of the triangle. This isn't a problem; it's an exercise. It was one of

27 "problems" given that night; the three previous assignments had contained

28, 45, and 18 problems respectively. The test on locus and constructions

contained 25 problems, and the students were expected to finish (and check!)

the test in 54 minutes an average of two minutes and ten seconds per

problem. Is it any wonder that students come to believe that any problem can

be solved in ten minutes or less?
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I also note that the teacher was quite explicit about how the students

should prepare for the test. His advice -- well intentioned to tha students

when they asked about the exam was as follows: "You'll have to know all your

constructions cold so that you don't spend a lot of time thinking about them." In

fact, he's right. Certain skills should be automatic, and you shouldn't have to

think about them. But when this is the primary if not the only message that

students get, they abstract it as a belief: mathematics is mostly, if not all,

memorizing.

Other aspects of what I'll call the "culture of schooling" shape students'

view of what mathematics is all about. Though there is now a small movement

toward group problem solving in the schools, mathematics for the most part is a

solitary endeavor, with individual students working alone at their desks. The

message they get is that mathematics is a solitary activity.

They also gat a variety of messages about the nature of the mathematics

itself. Many word problems in school tell a story that requires a straightforward

calculation (for example, "John had twenty-eight candy bars in seven boxes. If

each box contained the same number of candy bars, how many candy bars are

there in each box?"). The students learn to read the story, figure out which

calculation is appropriate, do the calculation, and write the answer. An oft-

quoted problem on the third National Assessment of Educational Progress

(secondary school mathematics) points to the dangers of this approach. It

asked how many buses were needed to carry 1128 soldiers to their training site.

if each bus holds 36 soldiers. The most frequent response was "31 remainder

12" -- an answer that you get if you follow the practice for word problems just
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described, and ignore the fact that the story (ostensibly) refers to a "real world"

situation.

Even when students deal with "applied" problems, the mathematics that

they learn is generally clean, stripped of the complexities of the real world.

Such problems are usually cleaned up in advance -- simplified and presented

in such a way that the techniques the students have just studied in class will

provide a "solution." The result is that the students don't learn the delicate art of

mathematizing -- of taking complex situations, figuring out how to simplify them,

and choosing the relevant mathematics to do the task. Is it any surprise that

students aren't good at this, and that they don't "think mathematically" in. real

world situations for which mathematics would be useful?

I'm proposing here that thorny issues like the "transfer problem" (why

students don't transfer skills they've learned in one context and use them in

other, apparently related ones) and the failure of a whole slew of curriculum

reform movements (e.g. the "applications" movement a few years back) have, at

least in part, cultural explanations. Suppose we accept that there is such a

thing as school culture, and it operates in ways like those described above.

Curricular reform, then, means taking new curricula (or new ideas, or...) and

shaping them so that they fit into the school culture. In the case of

"applications," it means cleaning problems up so that they're trivial little

exercises and when you do that, you lose both the powor, and the potential

transfer, of the applications. In that sense, the culture of schooling stands as an

obstacle to school reform. Real curricular reform, must in part involve a reform

of school culture. Otherwise it doesn't stand a chance.
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Well, here I am arguing away in the midst of as though you haven't

guessed -- phase 3. There are two main differences from phase 2. The first is

that I've moved from taking snapshot views of students (characterizing what's in

a student's head when the student sits down to work some prok!ems) to taking a

motion picture. The question I'm exploring now is: how did what's in the

student's head evolve the way it did? The second is that the explanatory

framework has grown larger. Though I still worry about "what's going on in the

kid's head," I look outside for some explanations -- in particular, for cultural

ones.

And yet plus ga change, plus ga reste le mem. I got into this business

because, in Halmos's phrase, I thought of problem solving as "the heart of

mathematics" and I wanted students to have access to it. As often happens, I

discovered that things were far more complex than I imagined. At the micro-

level, explorations of students' thought processes have turned out to be much

more detailed (and interesting!) than I might have expected. I expect to spend a

substantial part of the next few years looking at videotapes of students learning

about the properties of graphs. Just how do they make sense of mathematical

ideas? Bits and pieces of "the fine structure of cognition" will help me to

understand students' mathematical understandings. At the macro-level, I'm

now much more aware of knowledge acquisition as a function of cultural

context. That means that I get to play the role of amateur anthropologist and

that in addition to collaborating with mathematicians, mathematics educators, Al

researchers, and cognitive scientists, I now get to collaborate with

anthropologists and social theorists. That's part of the fun, of course. And that's

only phase 3. I can't tell you what phase 4 will be like, but there's a good

chance there will be one. Like the ones that preceded it, it will be based in the
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wish to understand and teach mathematical thinking. It will involve learning

ri..:w things, and new colleagues from other disciplines. And it's almost certain

to be stimulated by my discovery that there's something not right about the way

I've been looking at things.

Are there any morals to this story -- besides the obvious one, that I've

been wrong so often in that past that you should be very skeptical about what

I'm writing now? I think there's one. My work has taken some curious twists

and turns, but there has been a strong thread of continuity in its development; in

many ways, each (so-called) phase enveloped the previous ones. What

caused the transitions? Luck, in part. I saw new things, and pursued them. But

I saw them because they were there to be seen. Human problem solving

behavior is extraordinarily rich, complex, and fascinating -- and we only

understand very little of it. It's a vast territory waiting to be explored, and we've

only explored the tiniest part of that territory. Each of my "phase shifts" was

precipitated by observations of students (and, at times, their teachers) in the

process of grappling with mathematics. I assume that's how phase 4 will come

about, for I'm convinced that -- putting theoriet and methodologies, and tests,

and just about everything else aside -- if you just keep your eyes open and take

a close look at what people do when they try to solve problems, you're almost

guaranteed to see something of interest.
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LECTURE 2

APPLICATIONS OF UNDERGRADUATE

MATHEMATICS

BY ROSS FINN EY
MIT

Dr. Finney's lecture followed closely parts of the text of his paper
"Applications of Undergraduate Mathematics" origionally printed in
Mathematics Tomorrow, edited by Lynn Steen, Springer-Verlag, Hew York,
1981. The text is reprinted here by permission of the author.
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Applications of Undergraduate Mathematics

Ross L. Finney

In recent years there has been a phenomenal growth in the professional use
of mathematics, a growth so rapid that it has outstripped the capacity of
many courses in our schools and colleges to train people for the mathemati-
cal tasks that are expected of them when they lake employment. People
who lake jobs with the civilian government, the military, or industry, or
who enter quantitative fields as graduate students or faculty, discover with
increasing frequency these days that they lack acquaintance with important
mathematical models and experience in modeling. Many of them also find
to their distress that they have not been trained to he self-educating in the
application of mathematics.

This discovery, perhaps I should say predicament. is not the exclusive
domain of people who enter fields that depend for their progress upon
advanced mathematics. In Louisville. Kentucky, the profession of interior
decorating is highly competitive. To stay in business, a decorator must he
able to make accurate cost estimates. To do so without delay requires
facility with decimal arithmetic, fractions, and area formulas. People hired
as stenographers by The First National Bank of Boston discover that the
work is done not on typewriters but on computer-driven word processors.
Many stores now use their cash registers for inventory control. The keys on
business machines have multiple functions, and the functions must he

Rots 1.. Finney is currently Senior Lecturer at MIT and Project Director of the Undergraduate
Mathematics Applications Project at Educational Development Center, Inc Ile was a
Fultnighl Scholar at the Poinuire Institute in Paris. France. in 1955. and earned a Ph.!) in
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Ilcherman Award of the Illinois ( 'omitil of le.o.liers of htitlieribita s for essepininal
lions in the field of teacher education in mathematics

Kosc I.. Finney

performed in the right order. As these examples suggest, almost every
professional field now uses mathematics of some kind.

Since 1976 the U.S. National Science Foundation has provided support
for a unique nu:hi-disciplinary response to the need for instruction in
applied mathematics: the Undergraduate Mathematics Applications Pro-
ject. UMAP, as the Project is called, produces lesson-length modules, case
studies, and monographs from which readers can learn how to use the
mathematical sciences to solve problems that arise in other fields. The
applications presented by UMAP cover a broad range from chemistry,
engineering and physics, to biomedical sciences, psychology, :ociolo. .,

economics, policy analysis, harvesting. international relations, earth sci-
ences, navigation, and business and vocational pursuits.

UMAP modules are self-contained, in the sense that anyone who has
fulfilled the prerequisites listed inside the front covers can remonably
expect to read the modules and solve the problems without help. They
cover about as much material as a teacher would put into an hour's lecture.
There are exercises, model exams keyed to objectives, and answers. The
modules are reviewed thoroughly by teachers as well as by professionals in
the fields of application, revised, tested in classrooms throughout the world,
reviewed by individual students to be sure they are as self-contained as they
should be, and revised again before publication.

The modules are used for individual study, to supplement standard
courses, and in combination to provide complete text coverage for courses
devoted to applications of the mathematical sciences. These sciences, which
I shall simply call mathematics, include probability and statistics, opera-
tions research, computer science and numerical methods as well as the
elementary and advanced aspects of analysis, algebra .,nd geometry.

UMAP case studies are not intended to he as self-contained as are the
modules. The studies contain data and background information for a
mathematical modeling problem as a field professional would collect it, but
readers are asked to develop their own models for solving the problems.
The data are real, the problems current. Teachers are given the solutions of
the problems as they were originally worked out by the professional applied
mathematicians who furnished the problems to the project. Each study has
a teacher's guide developed through classroom use. The case studies are
used in mathematical modeling courses, and may take several weeks to
complete. One of their striking features is that, like the UMAP modules,
they expect no previous experience with mathematical modeling on the part
of either instructor or student. Nor do they require any previous knowledge
of the applied field. Anyone with the right mathematical background can
work through them successfully.

UMAP's expository monographs are works of eighty pages or more that
make available to students ill upper level courses, and to faculty in thyme
fields, significant applications that are not in column:lei:II texts. 'They a also
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give users of standard texts access 10 additional and complente6tury profes-
sional methods. Like all UMAP materials, the monographs are written for
students to read, and contain exercises with answers.

Although UMAP modules, case studies and monographs are similar to
traditional texts in that they provide instruction for students with suitable
examples and exercises, they differ dramatically in their objectives: a
UMAP unit follows the logic of the practitioner, not the syllabus of a

course it presents mathematics as a natural constituent of a whole prob-
lem, not as a defined niche in a planned curriculum. Because of their
allegiance to diverse masters, UMAP curriculum materials reflect both the
excitement and disarray of current practice rather than the artificial order
of traditional textbooks. They provide an entree to the useful mathematics
of the next decade. Here are some examples, taken from UMAP modules.

Measuring cardiac output

Brindel lick and Sinan Koont wrote Measuring Cardiac Outputto
leach an application of numerical integration in medicine.

Your cardiac output is the amount of blood your heart pumps in one
minute. It is usually measured in liters per minute. A person awake but al
rest, perhaps reading, might have a cardiac output of five or six liters a
minute. A marathon runner might have a cardiac output of more than
thirty liters a minute.

A change in cardiac output may be a symptom or a consequence of
disease, and doctors occasionally want to measure it. One technique for
doing so, on:. .hat works when the heart's output is fairly constant, calls for
injecting a small amount of dye in a main vein near the heart. Five or ten
milligrams will do. The dye is drawn into the heart and pumped through
the lungs and into the aorta, where its concentration is measured us the
blood flows past a Swan-Ganz catheter. Figure I shows a typical set of
readings in milligrams per liter, taken every second for about twenty-five
seconds.

You will notice in Figure I that the concentration stays at 0 for the first
few seconds. II takes that long for the first of the dye to pass through the
heart and lungs. The concentration then begins to rise. It reaches a peak at
about 12 seconds, then dechues steadily for another seven seconds. Instead
of tapering to 0 at that point, however, the concentration rises slightly and
holds steady. Some of the dye That went through first has begun to
reappear.

The determination of the patient's cardiac output require:: calculating
the area tinder the curve that gives the concentration of the first-time-
through dye. To find this curve, or at least to make a satisfactory version of
it, out has to replace the real data points for the last few seconds by
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Figure I. Typical readings of dye concentration in the aorta when 5 mg of dye areinjected into a main vein near the heart at t ,= 0 seconds.

fictitious ones, as shown in Figure 2. The chosen points continue the
downward trend of the points that precede them. The estimates involved inselecting the fictitious points seem reasonable, and any errors introducedby the replacement are likely to he small in comparison with otheruncertainties in measurement.

The concentration curve can now he sketched, but there is no formulafor it that can be integrated. This is often the case with data generated inthe laboratory or collected in the field and there are standard ways to cope.
On the data here there is no reason to use anything more sophisticated than
Simpson's rule or the trapezoidal rule, which is 'irecisely what llorelick andKoont proceed to do. The patient's cardiac ourput is then calculated by
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Figure 2. The curve shown here is fined to the seal and adjustill data points. 14 6height 1.1we the lanionnal axis approximates the conecatration of the injected dyepassing the numinning point in this patient's am in for the (if hi thin:.
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dividing the estimate obtained for the integral (expressed in milligram
minutes per liter) into the number of milligrams of dye originally injected.

The result: 6.8 liters per minute.

Chemistry

Ralph Grimaldi's module, Balancing Chemical Reactions with Matrix Meth-

ods and Computer Assistance, shows how matrix methods may be used to
balance chemical reactions. The unit gives a concrete setting for the
concepts of linear independence and dependence in vector spaces of
dimension four or more.

In the reaction
Pb(N3)2+ CR(Mn04)2CR203 + Mn02 + Pb04 + NO,

which hikes place in a basic solution, the atoms from lead azide and

chromium permanganate combine into four other products; chromium
oxide, manganese dioxide, trilead tetroxide, and nitric oxide. To find how
much of each of the original reactants has to be present to produce how

much of each of the products, we "balance" the reaction. That is, we find

integers u, 0, w, x, y, and z, with the property that u molecules of lead azide
plus u molecules of chromium permanganate produce exactly'w molecules
of chromium oxide, x molecules of manganese dioxide, y molecules of
trilead tetroxide, and z molecules of nitric oxide. Schematically,

u PO(N3)2+ u CR(Mn04)2 w CR20!+ z Mn02 y P11304 + z NO.

The numbers u, u, w, x, y, and z are integers chosen to make the number of
atoms of each element the same on each side of the reaction. To balance

the reaction, we balance the atoms.
To balance the atoms, we assign a basic unit vector to each element. It

does not matter which vector we assign to which element, as long as we
assign one apiece and keep track of the assignment. The assignment

Pb ( I , 0, 0, 0, 0)

N = (0, I , 0, 0, 0)

Cr (0, 0, I, 0, 0)

Mn (0, 0, 0, I, 0)

= (0, 0, 0, 0,

will do as well as any. We use five-dimensional vectors because there are.
five elements.

We then replace the chemical reaction with the vector equation

u(1, 6, 0, 0, 0) + 1)(0, 0, I, 2, 8) = w(0, 0, 2, 0, 3) + x (0, 0, 0. I, 2)

r( 3, 0, 0, 0, .11 ci0. I, 0, 0, I).
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You can see where the mho entries Conn from. For every a lead atoms in
lead azide. Ph(N2)2, there arc 6u nitrogen atoms; hence the u( I, 6, 0, 0. 0)
in the vector equation. For every ti chromium atoms on the left side of the
reaction, there are also 21) manganese atoms and 81) oxygen atoms. And so .

on for the other four integers, w, x, t', and z.
The idea now is to solve the vector equation for the integers u, v. w,

aud z: To do so we rewrite the equation as a system of five linear equations
in six variables. Six variables are too many for a unique solution, but we
can arhitraril) assign the value I to the variable u tit match the number of
unknowns to the number of equations. We may want to change the value
assigned to u later, but u = I will do for now. The resulting system in
matrix form is

0 0 0 3

0 0 0 0
61

-1 2 0 0 0 x= 0.
2 0 I 0 0 y 0

-8 3 2 4 I z 0

This system of equations can be solved by a short computer program
listed is grimaldi's module. The solution given by the computer when
u = I is

= 2.93333, w = 1.46667, x = 5.86667, y = 0.33333, z = 6.

These values are not the integers we seek because they are not all integers.
Once we notice that 0.03333 is about 1/30 and 0.06667 about 2/30,
however, we know enough to scale everything by taking a equal to 30
instead of I. The resulting solution is

u= 30, ti = 88, w = 44, x 1764 = 10, z = 180.

The module discusses what to do if at first you do not recognize thy;
integer solution that underlies the computer's decimal solution. It also
discusses an example in which reducing the number of variables to match
the number of equations does not scent to work. The difficulty is traced to
the fact that the reaction being balanced consists of two reactions that take
place simultaneously, independently of each other. Each must he analyzed
apart from the other.

Scheduling prison guards

lames M. Maynard's A Linear Programming Model for Scheduling Prison
Gurs describes a linear program that Maynard developed for the Pennsyl-
vania State Bureau of Corrections. As the newspaper clippings reproduced
in Figures 3 and 4 show, the Bureau was concerned in the middle 1970's
about the increasing cost of paying prison plaids to wink overtime. In the



41

Applications of I Ilitielgtatittate klatlictitancs

At 8 State Prisons

Overtime Guard Pay
Bills Keep Mounting

0.44.40.1.
Ike Bateau of feller.

11011S is SW play11411 heavy

tweinnte Mire; stomas ha
duly al the eight stale pits.
ins. Same gonads are
doldellog their salaries
iluougheatia sink

A bateau spokesman
said yesterday that M the
y rat ended June mi the
a$oncy pod out *ratty $1
nuilioa in oyes time. a lanal
W ever the pre.
vW4Syelit

lire bureau ahead). Lad
beim atlseittty ego wont kis

exresove ova-dome pay
meals legtsialut sand ask
rr ullirtels think the shoe
could save money by kiting
note guards at mauler sal.
oaks and ieducing uses.
time payments. Cl time sad
a hall a ad double time

Medlin/ Gee Robed I'
Cmev. one of I Caller..
etiord to yesterday Call

ovritime at the moor pots
cola Dallas. Luanne CIAO.
ty tante than 1610171 was
pool doing the Ihral $tal
rnusdINlune1171

thot rtosy Or the ASSeeinted Prefia.

Guards Due Wiudhdl
For Missed Breaks

IPms Ts. Y.01.1 wt.. Inlgto
About EN* Male plum

guilds wilt be tensioned for
perhaps 11161 tack for
missed coffee breaks. it was
Waned yesterday.

The wiadlaN comes as a te-
suh of in arbiorsior's kd
skit earlier this womb to
mievanees lakd at corgi pe
rat lusttulutas across She
stale It may roll the tom.
namocalta as much as St/
mllik i.

tinder the icons cd iheir
contract wish the Suit tho
r e a a al Conecnocl. the
guards ate aUeaed IS min.
ale Weak every lour home

NM because of critical
mannover shatter s al the
striex masons. ihe mn date
Caw bst.a able Ill lake 110!

breaks since before July.
I,;..

Robert Solar, executive di.
room kw the Mutsu of Car.
oethoss. Muted to rosnraeM
on published reports of the
ieunbuisenteol.

The guard setae:kw the
phone at the bureaus head.
mounts Km said M bad
It..; -it ot the 4-dims,. hut
add 4. he shook! be gelling
SON "

the arldiraiore deft:inn
sal handed Ikea on lull It
ettntili, to published it
tents, but the hugest; made
so announcement et IL

Arroidthe to lard Walsh,
poesuleon of guards local
2511 at Ittstera Slate
Pe.asentlaiy. the payment
well Le made to the gusto's
suoinie this mirth

Court esy of 1114. lia r I shorg Pst r 1111 .

Pipit 3.

. 49

Casey said 11 somas It
ceoved between 1111.114 Ind
KAP on overtime Ekveui

sadliakesiels2 alai:1E1741. "011'ee

guild lots a 111.115 base
satiny

"The new commissionet
Malmo Itoblasoa Is

very aware al She problem
hod that. blame wog early
alert movie.. is being
looked at way carefully

." the corer:lion to.
sea, trokesmaa said "Ile
dues wino tu cut down un

Ile said farmer Commis.
Mosier &mail Warier had
a kir tog !recce an ethyl be.
Salife as the dial budget
pulley adopted by the
Shipp administratioa.

But under Roblasan. who
assumed the post last
mounds. the ;setae has been
lilted aid 33 guest' va
muscles mob the state
'retiring lolled. the spokes.
01/111ss1d

Ifitweves. the nveetsme
problem will Haler

filen 11 lellts. superin
tendon at Dallas. said va
atomics alone don't govern
how mock overtime will be
needed Vamotook and the
fail that *inhumed mull
levels me Inadequate and
welurhiss,beaukt.

"I have requested odd.
tuuu.1 °Bit if Positions ithe
hist two years 1 received
olurw poisluas ."

Without addittuail tint.
en luminous I see tem),
lode impart on the into
tioutolo*estinte."hesaiii

42

Rocs I.. littitey

Senators Tour
Prison Facility
In Camp Hill

By MERRY 11100115
Stall Walter

A facklioding tour by meta-
bets of die State Senate Pro
se !matey Committee yeeler-
day at the Stale Conectionet
Instotuttaa at Camp Ililt
*edited more Ide a whisk
wind campaign swing wish sea
aims shaking hands and elm
citing opinions from prisoners
and guards.

Rut Is fact. the onfoomation
SOU111 by lour dale &diatom
an the Math tour of the eight
dime pistons yielded intoima

Courtesy of the
Harrisburg Patriot,

two that may assist the ape
coat committee In drafting
prisonreisied kgislation.

Sea. .Freemen Hankins. D.-
Philadelphia. c in m1ttee
chairman; Sta. Marna Mar.
say, 11.laitente; Sen. Her.
bert Atkne. D.Philadelphia.
and Sea. James E. Roes. D..
dearer -Washingloo. arsons
panted by a bird of reports's.
bottled through the pion** to
tuner Allen Tap. in a three.

hoar VII' Sour.
The senators engaged Er-

nest Palma. promo superin
tendeol. in a giveandsake
roundtable discussion belnie
the 10111 began. They obtained
the following Inforrsanon.

The prison paid 1151.0103
in overtime to guards last
year said erpeas tr pay
1011.000 in overdose this year.
The prison needs an additioa
al 6; maids to ;educe the
amount el overtime pay.

Guards sought for Graterford
By The Agoelme4 Press

The hrad of the siaie for.
se, hoot Bureau says Gov
Shipp and the I egislattne
nay be aM ed iu mays& hum
ISO to 1011 guards al the hint
eiln.:d Stale Pusan

She lactease would rahe to
Mill the number of maids at
the Monlicontery County Ott.

Corretdons Commissioner
Slower. Weiner estimated

the ad 4.d guards waied coat
liel MO annually.

The moire Mel Could Cid
admit on uvellime payamnla
to Ile ruireal guards. now
r u u a. n g about $24.0011 a
month

A Ir k
Co merlood. the larjeal .1

the neoe's eight corrector/sal
lastoutions. has about 1.011

tamales. about ICS below ca-
'icily.

I:st,t CS tsy ail the Asssit. !meet Ps tart;.

Pipte 4.
50



Application's of Underarm 'nate Klathemitties

43

year ending June 30, 1975. for example, the Bureau paid nearly four million
dollars in overtime pay, $750,000 snore than it had paid for overtime work
the year before. Some overtime work is to be expected, of course. It is
expensive to keep a f.:9-time staff lartrt enough to cover peak loads, for a
staff this large is likely to be underemployed much of the time. On the
other hand, a staff so small that regularly scheduled guards have to work so
many overtime hours that they sometimes double their salaries is also
expensive, as the Bureau was finding out. Understaffing can be expensive
in other ways, IOU, for fatigue and high inmate-to-guard ratios create
dangerous tensions.

Legislators and other officials thought the Stale might save money by
increasing the size of its regular prison staff. Maynard was hired to
deteimine the size of the least expensive overall work !. ce.

The goals of Maynard's investigation were to minimize the total cost of
paying prison guards, while reducing the overtime work and establishing
uniform work schedules in all prisons. Ile was able to meet the goals
successfully with a linear program, the one described in his ((MAP module.

Table I shows two work schedules for one of the Bureau's prisons,
referred to here as Prison G. One schedule has parentheses, the other does
not. The numbers with parentheses are the 'mint. s of guards recom-
mended by the linear program. The numbers without parentheses show
how inany guards were on duty at Prison 0 during the week ending
September 30, 1973.

The schedules are weekly schedules divided into twenty-one periods,
three shifts a day for seven days. Each box in the table shows the numbers
of guards working at three different pay levels during the given shill:
regular, time-and-a-half, and double time. The two numbers in the top line
in each box are the numbers of guards working the shift as part of their
regular weekly work schedule. The two numbers next in line are the
numbers of guards working the shift at lime-and-a-half. The last two
numbers are the numbers of guards working at double time.

For example, Monday morning, September 24th was worked by 94
guards on regular schedules, 19 guards at time-and-a-half, 3 guards at
double lime. On Tuesday afternoon more than half of the 146 guards
present were working overtime.

The numbers in parentheses proposed by the linear program are strik-
ingly different from the 1973 figures. On Monday morning the model
covers the work load with 117 regularly scheduled guards; where once there
had been 22 overtime guards, now there are none. On Tuesday afternoon
there are only 9 overtime guards where once there had been 76. The new
work schedule is more equitable and less fatiguing than the old one. It is
also more economical. if regular pay is calculated at $4 an hour, for
instance, the new schedule for Prison 0 saves the State $5,216 a week.

Readers of Maynard's module use given an opportunity to follow the
development of the linear ()mutant, to see the effects of various scheduling
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Table I. Data and Results from Prison <I for the Week Ending Septentber 30. 1973

Day Shift

Morning r Afternoon Night
94 (117) 70 (131) 38 (14)
19 10) 61 10) 40 (4)

Monday 3 (0) 0 10) 0 (0)

116 (1'7) 131 (131) 78 (78)

94 (126) 70 (137) 36 (74)
17 (0) 62 19) 38 10)

Tuesday 15 (0) 14 (0) 0 (0)

126 (126) 146 (146) 74 (20
97 (116) 69 (137) 36 (74)
19 (0) 68 (0) 27 II)

Wednesday 0 (0) 0 (0) 12 (0)

116 (116) 137 (137) 15 (75)

94 (128) 63 198) 37 (74)
41 (21) 24 (2) 34 (1)

Thursday 14 (0) 13 (0) 10 (0)

149 (149) 100 (100) ill (81)

74 (97) 45 (89) 37 (39)
20 (0) 16 (0) 2 (0)

Friday 2 (0) 0 (0) 0 (0)

96 (97) 61 (89) 39 (39)

57 (43) 37 (45) 26 (0)
IS (33) 14 (6) 3 (29).

Saturday 4 (0) 0 (0) 0 (0)

76 (76) 51 (51) 29 (29)

53 (63) 36 (48) 25 (35)
7 (0) 11 (0) 3 (0)

Sunday 3 (0) 0 (0) 2 (0)

63 (63) 48 (48) 30 (30)

assumptions, and to develop a small-scale program of their own. As in the
Grimaldi chemistry module, She program does not at first yield integer
solutions, but by rounding the numbers of guards given by the computer to
integer values and rerunning the program lo determine the values of the
remaining variables, one obtains a feasible solution that is close enough. It
is not necessary to rove that the integer solution found this way is optimal.
One can test its dily by evaluating the objective function, which gives the
total amount of money paid 10 prison :pants. If tit:: value of the function
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for the integer solution is close to the value of the function for the original
riot- necessarily- integer solution, then the integer solution is good.

Continuous service in legislatures

Once a group of people has been elected to a legislature. the number of
them who serve continuously from that time onward will normally decrease
exponentially with each passing election.

The elections for the Senate of the United States are held in the full of
every even-numbered year. The senators, elected fpr six-year terms, take
office the following January. Figure 5 shows the proportion of the 1801
Senate that remained in office after successive elections. They were all gone
by 1811. The data are fitted nicely by the curve

y 60 0 029s
'

where t is measured in months beginning in January 1801 with t ... 0.
Thomas W. Cassteven's module. Exponential Models of Legislitive Turn-

over, shows how exponential curves can be used to forecast election results,
to speculate convincingly about what would have happened if a postponed
election had been held on time, and to disclose suppressed data.

1.0

ati
it

i
c 0.5
_t
0..

_L. ___1__
1801 1803 1805 1807

t
1809 1811

Dale taking office

Figure 5. The proportion of the U.S. Senators taking office in 1801 who continued
in office through subsequent terms. The pattern shown here, of discrete election
data fitted by an exponential curve, is typical of legislative In he data to he
fitted may be either raw WS in Figure 6) or proportional Vas in the figure above).
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One of Cassteven's tunny interesting examples is the turnover in the
membership of the Central Committee of the Communist Party of the
Soviet Union. Is 1957. First Secretary Nikita Khroschev, in some semi-
secret infighting. succeeded in removing a number of his opponents from
the Committee. Their identity was not made public, nor was their total
number. Their number can he estimated, however, by a calculation based
on election data from nearby years. There were elections in February 1956.
October 1961, March 1966. and March 1971. From these one can calculate
the exponential decay constant fur the Central Committee's normal turn-
over. One can then calculate how many of the February 1956 cohort should
have been present after the 1961 election. It turns out that there were about
12 too few of them there. At least a dozen full members were removed in
Khruschev's purge.

It is inteKting to note that the decay constants for the U.S. Senate and
the Central Committee of the Communist Party of the Soviet Union have
been nearly equal in recent decades. For the data shown in Figure 6. the
best filling values of the decay constants are about 0.0079 (Senate) and
0.0073 (CC/CPSU). :( the twelve members purged by Khruschev in 1957
are added hack in. the match is even closer.

.
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Figure 6. A comparison of continuous service in the U.S. Senate and the Central
Committee of the Communist Party of the Soviet Union. The exponential decay
constants of these two legislative bodies have been =lily equal in recent years.
Melnik:alp in these Iwo legislatures has been turning over at about the same tale.
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Mercator's world map

Anyone who has ever wondered what the integral of the secant function is
good for can find a satisfying answer in Philip Tuchinsky's UMAP module,
Mercator's World Map and Me Calculus. The unit explains how the integral
of the secant determines the spacing of the lines of latitude on maps used
for compass navigation.

The easiest compass course for a navigator to steer is one whose compass
heading is constant. This might be a course of 45° (northeast), for example,
or a course of 225° (southwest), or whatever heading is required to reach
the navigator's destination without bumping things on the way. Such a
course will.lie along a spiral that winds around the globe toward one of the
poles (Figure 7), unless the course runs due north or sou* or lies parAllel to
the equator.

Figure 7. A flight with a constant Leming if 45° Fast of Not fit from the Galapagos
Islands in the Pacific to Franz Josef I and in the Arctic Ocean.
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In 1569 Gerhard Kramer, a Flemish surveyor and geographer known to
us by his laiinized last name, Mercator, made a world map on which all
spirals of constant compass heading appeared as straight lines. This fantas-
tic achievement met what must have been one of the most pressing
navigational needs of all time. For from Mercator's map (Figure 8) a sailor
could read the compass heading for a voyage between any Iwo points from
the direction of a straight line connecting them.

Figure 9 shows a modern Mercator map. If you look closely at it you
will see that the vertical lines of longitude, which meet at the poles on the
globe, have been spread apart to lie parallel on the map. The horizontal
lines of latitude that are shown every 10° are parallel also, as they are on
the globe, but they are not evenly spaced. The spacing between them
increases toward the poles.

The secant function plays a role in determining the correct spacing of all
these lines. The scaling factor by which horizontal distances from the globe
are increased at a fixed latitude r to spread the lines of longitude to fit on
the map is precisely sec T. There is no spread at the equator, where
seer = I. At latitude 30° north or south, the spreading is accomplished by
multiplying all horizontal distances by the factor sec 30°, which is about
1.15. At 60° the facti'r is sec 60° = 2. The closer to the poles the longitudes
are, the more they have to he spread.

The lines of latitude are spread apart toward the poles to match the
spreading of the longitudes, but the formulation of the spreading is compli-
cated by the fact that the scaling factor seer increases with the latitude r.
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Figure 9. The flight of Figure 7 traced on a modern Mercator map. Courses of
constant compass heading appear as straight lint paths on a Mercator map. They
are easily constructed. measured. and followed.

The factor to he used for stretching an interval of latitude is not a constant
on the interval. This complication is overcome by integration. If R is the
radius of the globe being modeled. then the distance D between the lines
drawn on the map to show the equator and the latitude a° is R times the
integral of the secant from zero to a:

D = R jaw I di.

The distance on the map between two lines of north latitude, say from a°
up to le. is

D = R fbseci R fasecT rfbseci dr.

Suppose, for example. that the equatorial length of a Mercator map just
matches the equator of a globe of radius 25cm. hen the spacing on the
map between Ghe equator and latitude 20° mirth is

25 1
-211

sec r di 9 cm,
.hr

whereas the spacing between latitudes 69° north and 89° north, is

57
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The vertical distance on the map between latitude 60° and latitude BO° is
more than three times the vertical distance between latitude 0° and latitude
20°. The navigational properties of a Mercator map are achieved at the
expense of a considerable distortion of distance.

Concluding thoughts

Mathematical reasoning penetrates scientific problems in numerous and
significant ways. If the secret of technology, as C.P. Snow said, is that it is
possible, then the secret of mathematical modelling is that it works.
However, the process of developing and employing a mathematical morlei
is both nune subtle and more complex than is the traditional solution of
mathematics textbook problems. Real models frequently have to be con-
structed in the presence of more data than can be taken into account; their
conclusions are often drawn from calculations in which good approxima-
tions play a greater role than df exact solutions: very ofien there are
conflicting standards by which solutions can be judged, so whatever an-
swers emerge can only rarely be labelled as right or wrong. Students usilg
UMAP modules, case studies, or monographs experience m.:!:::-%tics in its
scientific context, and leave the classroom better equipped to face real
demands of mathematical modelling in business, research, and government
work.
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ASPECTS OF CURRENT RESEARCH IN MATHEMATICS EDUCATION*

Carolyn Kieran

Universite du Quebec a Montreal

The session devoted to 'Aspects of Current Research in Mathematics

Education' at the 1986 meeting of CMESG included reports of research being

carried out in British Columbia, Alberta, Ontario, Quebec, and

Newfoundland, with a special report being given by JOrg Voigt on his

research in Bielefeld, West Germany. These reports were not meant to be a

comps ..ensive survey of the mathematics education resarch being engaged in

throughout the country, but were intended to give an idea of some of the

main themes of current interest to researchers and to provide pointers to

some of the work which is going on. More details can be had by

corresponding directly with the researcher(s) involved. This article

briefly summarizes those reports.

British Columbj

David Kirshner reported on the research projects of three colleagues,

as well as his of work. There is no single theme which characterizes

these projects. One study (D. Owens) involves intensive work with a small

number of sixth grade pupils to see if meaningful understanding of decimal

concepts can be achieved at that graOe level. Another project (W, Szetela)

*Thank you to all who contributed both to the session and to this article:
David Kirshner (B.C.), Tom Kieren (Alta.), William Higginson (Ont.), Erika
Kuendiger (Ont.), Claude Gaulin (Que.), Joel Hillel (Que.), Lionel Mendoza
(Nfld.), and Jfirg Voigt (Bielefeld, West Germany). Our apologies for
misrepresenting anyone's research and for not being able to include mention
of everyone's work.
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deals with problem solving, more specifically, the improvement of teacher

reliability ratings in the evaluation of students' protocols. Szetela is

also carrying out a cross-cultural problem-solving study (Canada and

Poland) involving 11- and 13-year-olds. The third study (D. Robitaille and

G. Spitler) focuses on developing teaching materials and providing

in-service training At the junior secondary level in the Dominican

Republic. Kirshner's research in algebra Is based on the assumption that

symbol skill relies on procedures which Are not related to mathematical

theory, but rather to generative linguistics.

Alberta

Although Tom Kieren was not able to attend the meeting this year, he

prepared a report for this session.* The thrust of the research being

carried out in Alberta can be captured in the questions: How do persons

build mathematical ideas? What curricular/Instructional actions affect

(positively and negatively) this knowledge building? A recently comple0d

study in Calgar, (L. Marchand. M. Bye, B. Harrison. T. Schroeder) looked at

the match of school demands and knowledge building levels of pupils in

elementary schools (1767 pupils). A 'match' with student levels and

demands was found for 64% of the cases, but there were significant

divergences at the grade 5 level where the curriculum appeared to be rather

formal. An Edmonton group of researchers (Y. Pothier and D. Sawada) is

Investigating partitioning and fractional numbers. Another team (T.

Zieren. D. Sawada, B. Wales) has been looking at an image of mathematical

Kieren. T. 'Mati.lnatical Knowledge Building in the Classroom: A Report of
Recent Mathematics Sduca-ion Research and Development in Alberta. Copies
of this report are available from T. Kieren, University of Alberta,
Edmonton, Alberta, T6G 2G5
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knowledge building and using it to interpret the fractional comparison

abilities of young children (ages 6-8). Researchers (D. Sawada and A.

Olson) are also involved with using the concept of auto-poeisis as

developed by Maturana to explain how a person's mathematical knowledge

system evolves.

As well, there has been considerable work on Logo and mathematics tri

Edmonton: Cathcart has looked at debugging strategies; Kieren and Olson

have developed a theoretical model relating van !bele geometry levels,

levels of Low use, and levels of language use from Frye; Ludwig and Kieren

have tested this theory and used it to explain results in a Turtle Geometry

develuinent project involving transformational geometry with seventh

graders; Dobson and Richardson have developed extensive curriculum

materials on Logo and problem solving for preliminary elementary aged

children.

Finally, there has been an interest in expert systems and mathematics.

Balding has designed a system which allows teachers to analyze the ratio

work of a consistent student work simulator and, thus, to identify aspects

of student thinking patterns. Moreno is developing a problem solving

helper which will use expert knowledge/strategies in a computer advisor to

beginning calculus students.

Gada2

Some of the recent mathematics education research in Ontario has

focused on interpreting the results of the Second International Mathematics

Study (SIMS). For example, E. Kuendiger and G Hanna have analyzed SIMS

data according to sex differences. Another related area of research

interest is Women and Mathematics (E. Kuendiger. G. Hanna, P. Rogers)
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Kuendiger has developed a theoretical model accounting for sex differences

in achievement and course-taking behavior. A current project (E.

Kuendiger) examines relationships between preservice student teachers'

perceptions of mathematics and their mathematics teaching. Another study

(G. Hanna) focuses on instruction and achievement in eighth grade

mathematics classrooms. Another project whi:1) is currently in progress (N.

Hutchinson) involves the teaching of representation and methods of solution

of algebra word problems.

A large number of Logo studies were incorporated into the 'Creative

Use of Microcomputers by Elementary School Children' Protect (W. Higginson,

D. Burnett, H. Carmichael, and others). Though the learning of mathematics

was not the major focus of this project, the final report does provide

several insights into children's geometry activity in vcrious Turtle

Geometry environments.

GUI=

Much of the research taking place In Quebec can be characterized as

the study of the cognitive processes involved in learning matnematics.

Many of these cognitively-oriented studies investigate different

aspects of mathematical learning within a Logo environement. One research

team (J. Hillel, C. Kieran, S. Erlwanger, J.-L. Gurtner) is examining till

use of visual and analytical schemas by sixth graders in the solving of

selected Turtle Geometry tasks. Another group (H. Kayler, T. Lemerise, B.

Cate) Is Investigating the evolution of logical-mathematical thinking among

10- to 12-year-olds in a Logo environment. A third study (R. Pallascio and

R. Al acre) is focusing i.. the development of spatial-visueliz ':on skills

by fourth graders using Logo-.ike computer activities involving polyhedra.

In another study (E. Lepage), a modified version of Logo for the very young

63

56

serves as the setting for researching the learning of early number

concepts. An Object-Logo computer programming environment is used by

another researcher (G. Lemoyne) Lo examine the knowledge schemas used by

to 12-year-olds in their production of mathematical expressions.

Other studies use non-Logo computer settings for their investigations.

One project (A. Taurisson) involves researcher-designed programs to be used

as tools by elementary school children in order to develop their problem

solving eailities. Another team (A. Boileau. M. Carancon, C. Kieran) is

examining the use of computer tools and methods as a semantic support for

learning high school algebra. A group of researchers (J.C. Morand and C.

Janvier) is investigating the evolution of students' primitive conceptions

of circles. Another study (C. Janvier and d. Garan9on) is looking at the

understanding of functions and feedback systems using microcomputers.

Other researchers (M. Belanger and J.-B. Lapalme) are creating exploratory

computer learning environments in which children can develop problem

solving strategies.

Other studies with a cognitive emphasis which are currently being

carried out (or have only recently been completed) include the work of:

N. Herscovics and J. Bergeron who are investigating the acquisition of the

concepts of early timber among kindergartners and of unit-fraction among

older children; D. Wheeler and L. Lee on high school students'

understanding of generalized algebraic statements; L. Chaloux on sixth and

seventh graders' construction of meaning for algebraic expressions; B.

Janvier on the use of dynamic representations in the learning of early

arithmetic; N. Bednarz who is comparing constructivist and traditional

approaches to the teaching of numeration; C. Girardon on conflictual

conceptions of transformations; A. Boisset on the difficulties which

college level students experience with calculus; B. Heraud on the concept
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of area among P-year-olds; C. Gaulin and R. /lure on the effects of

calculators on the achievement of fifth and sixth graders; C. Gaulin, E.

Puchalska. and G. Noeiting on students' understanding of the representation

of 3 -D geometrical ahm-1 by means of orthogonal coding; N. Nantais on the

evaluation of children's mathematical understanding by means of the

mini-intervieL

Another group of studies exists where the focus is on attitudes

towards mathematics: J. Dionne has analyzed teachers' perceptions of

mathematics and of mathematics learning; L. Legault is looking at the

affective factors influencing mathematical difficulties; L. Gattuso and R.

Lacasse are investigating mathematical anxiety at the college level.

Several related studies have recently been carried out by R. Mura and her

colleagues on Women and Mathematics.

Ugwfoundlanq

The mathematics education research which is presently underway in

Newfoundland Includes the work of L. Mendoza, E. Williams, and M. Kavanagh.

L. Me)Sza is Involved in a study of error patterns associated with

combining mnnomials.

underlying rationale

in-depth Interviews.

He is examining both the error patterns and the

for these errors by means of written testing and

M. Kavanagh is studying grade 12 students'

perceptions of mathematics, comparing those of students from all male, all

female, and cu-educational schools. E. Williams' focus is the study of

students writing mathematics competitions such as the Canadian Mathematics

Olympiad, more specifically, the investigation of heuristic and executive

strategies used by mathematical problem solvers.
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Special Report

The CHEW research information session In St. John's also included a

special report by arg Voigt of Bielefeld on his own research. He provided

us with a brief summary of his presentation which is reproduced here:

Patterns and Routines in Classroom Interaction:
A Microethnographical Study in Mathematics 'Education*

J6eg Voigt
Universitit Gielefeld, West Germany

Often the question-response teaching in mathematics classrooms is seen
by the teacher as being a liberal discourse in which the students actively
participate. In opposition to the teacher's view, microanalyses of the
discourse processes point to concealed and stereotyped patterns of
interaction and routines. Certain patterns and routines lead to

misunderstanding of the teacher's Intentions. On the one hand. the

patterns and routines facilitate the 'smooth' functioning of the classroom
discourse; while, on the other hand. they produce undesirable effects on

the students' learning.

For instance, the following pattern has been reconstructed across

several videotaped situations. The teachers attempted to activate the
students' everyday experiences as a starting-point for introducing a new

mathematical content.
The teacher asks LA open, ambiguous question hoping to elicit the

students' non-academic ideas.
The students refer to their own subjective experiences from

everyday life.
The 'eacher rejects the students' ("deviant) everyday idea using

tactical routines. Althmigh the students' idea could be a worldly

wisdom, the teacher wants a different specific idea. He uses

suggestive hints in order to make the students give the expected

answer.
In effect, the students learn to Isolate the mathematical concept
In the classroom from their 'truths' in everyday life.

While the teacher thinks that he used the students' experiences as a
starting point, the oppcsite happened. The teacher and the students Seem
to be so skilled in how to deal with each other that the teacher does not
become aware of the gap between his intentions and the routines taken for

granted. Because of the latency of the routines, It would be helpful to
develop the teacher's awareness of such microprocesses as they occur in

these social interactions.

" A fuller version of this study is reported in:

Voigt, J. 'Patterns and routines in classroom interaction'. Recherches

enDidactioue dea Math6maticues , Vol. 6, No. 1, 1985, pp. 69-118.
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This Study Group derives much of its excitement and cohesiveness from
bringing together individuals who have long been concerned with topics
involving affective aspects of mathematics education, but who have
been developing their ideas almost in isolation. For me it meant
reconnecting with two excellent foci: the positive part of effec-
tivity, and the community in the classroom which sets the stage for
these positive ceelings through its cooperative organization. As we
headed into our final hour, peter Taylor summarized most beautifully
our collected anecdotes in the following framework:

* Our belief in the sharing of goals; e.g. by the teacher,
openly and honestly, with full frontal explicitness, reducing
hidden agendas,

* Our belief in the sharing of our joy in doing math,

* Our caring for the people in the class and in the mathematics
awing done, and

.* Our promotion of cooperative small group work.

John Poland

The Working Group focussed on two activities. We did much problem
solving in pairs in an effort to identify and explore the emotions in-
volved in problem solving. This activity is described and the find-
ings are discussed in the appended paper.

Our second major activity was to snare techniques for implementing the
framework summarized above. The following paragraphs list some of the
many creative techniques that have been devised and used by various
members of the Working Group.

-The use of a monthly newsletter talking about the course, test
results, who the teachers are as people, the positive aspects of doing
mathematics, and where to get help.

-Taking small group or individual pictures at the beginning of the
course and posting them (perhaps take them at an early informal
gathering).

-Make a list of names and phone numbers of class members and get
everyone a copy.

-In some way convey expilicitly to the students that they are a spe-
cial group, perhaps breaking ground through some teaching or cur-
riculum innovation you are sharing with them.
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-Build in fun with math learning. Use Math games. Decorate the room.
Use flowers, music and movement.

-Control the lighting. Some teachers turn off fluorescent lighting
and use candles or lamps instead.

- Interview the physics, chemistry, etc. professors and put on big
cardboard their answer to the question, "What I want students to know
when they come into my course".

- "Algebra Arcade" (Wadsworth Electronic Publishers, 8 Davis Dr., Bel-
mont CA 94002) was suggested for a first algebra course for groups of
3 or 4 students to work at a time or for one large demonstration
screen.

-Allow students to suggest how they will be evaluated in the course.
They must come to ccnsensus. The discussion can extend over several
days.

-Spend teacher energy on the positive. Emphasize the students who do
achieve and their accomplishments.

-Talk about what understanding proofs does for them as people, that
they can handle and generate arguments. Have positive expectations.

-Use ice-breaking techniques that help students learn the correct lan-
guage and notation of mathematics. For example, put 4-5 students on a
team to try to communicate to another team (without showing any
writing) a given collection of math symbols.

-Seriously address the idea of math anxiety. The teacher can talk
about his or her own feelings about mathematics. Alert students to
use positive self- statements and other means to prevent emotions from
overwhelming short term memory. Evaluating an emotion can take up so
much student memory that little is left for mathematics decisions.
Math thinking becomes confused with thinking about math.

We came up with many areas .o explore further. We would like to know
which ways of organizing classrooms and tests encourage students into
good study, classroom and exam habits. How should we sequence ques-
tions, sets of problems that will provoke students to "review" as in
Polya? How should small groups best be utilized? What is best size?
How can writing be used in math classrooms?

We decided to ask colleagues to describe techniques they have used
successfully. We plan to compile these anecdotes together with a bib-
liography of appropriate readings and disseminate the information in a
fuure CMESG Newsletter.



AUTHORITY IN THE CLASSROOM

I should like to see the locus of authority in the classroom
shift away from the teacher and the material (these should be
regarded as resources - a less threatening category) and toward

sore inwardly generated forces such as beauty, excitement,
challenge, communication.

Let me explain the difference. When consulting a resource,
ma are the boss, when consulting an authority, the authority is
the boss. Alternatively, from a r2source you take what you want;

from an authority, you take what it wants. Early in the learning
game, teachers have to be authoritative. But part of their
purpose must be to gradually change themselves into resources (by
changing the student) and substitute instead the criteria which
guide active scholars through the question of whether they are
working in the right things: is it beautiful? does it excipme,
challenge me? does it lead to fruitful communication with my
colleagues?

If we relate this to problem-solving, one thing we see is
that the problems the student works on should much more often be
generated within himself and the various sources of inward
authority I listed above should increasingly be used to guide him
or the questions of what time he should spend on the problem, and
whether Certain avenues should be vrsued.

d1

COMPETITION AND COOPERATION

When one studies a community, there are two types of forces
one looks for.. competitive or disruptive forces and cooperative
or supportive forces. The mathematics classroom is a community
in which often too much of the action is really of a competitive
nature, either student against student, or student against a
teacher's' expectations, and the effect of this must often be to
increase student anxiety.

We felt that such anxiety was not beneficial to the student.
While it might enhance certain aspects of the student's
performance, we felt it was not likely to increase his
problem-solving abilities, and would certainly dampen the
feelings of joy he mighthave whet searching for the solution.

We made a number of suggestions for en'incing the
cooperative atmosphere of the classroom, in snort, the feeling
that we're all on the same side. First it is important that the
teacher be open and as explicit as possible: about the goals of
the course, about his views on the subject matter, and about his
own feelings about the class. It is important that the teacher
care both about the subject and about the students, and be
clearly enjoying the teaching experience. Second, the nature of
and rationale behind, the methods of testing and evaluation,
should be thoroughly aired. Thirdly the students should know and
work with one another; often this can be facilitated with small
group work. Other devices auch as classroom games, attention to
physical character of the room (lighting, decoration), and a
monthly newsletter, were mentioned. It was suggested that
experimental programmes often generate a very positive feeling of
uhared community. Perhaps we should more often be experimental;
even if we have.little flexibility in the content of the
curriculum, ',le can experiment with style.
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July 20,1986.

The "affect" workshop took place six weeks ago and even if some of the details

have slipped away (thanks for the reminders Fran), I am still feeling the after-

affects of having been with a group of student-centered math teachers who are

interested in exploring affective elem. '% in themselves and their students.

Although I have thought a lot (and talked a lot) about this theme, I feel that

the workshop broke my isolation.

The experience of doing individual problem solving in teacher-teacher pairs

was new to me. I have done some introspective work, interviewed about a hundred

students, and given the introspective problem solving exercise to many adults.

It was interesting to see that as teachers and mathematicians we are not so

very different from our students in affect during problem solving. Another

memory of that experience is of several people indicating that their problem

solving behavior was in some way indicative of their behavior in non-mathemati61

situations: "That's the story of my life." If this is so, it certainly would

be worth exploring further.

Although not everything has been said about affect in individual problem solving,

I feel I would like to move on to an exploration of group problem solving. In

the workshop we all seemed to be interested in promoting cooperative models and

group work in our classrooms. :tAt problem solving in groups is much more

complicated than individual work. Group dynamics and the politics of the class-

room come into pliy. 1, for one, feel a little insecure in initiating group

work - which maybe why I rarely "find time" for it. I th.. that the affect

workshop, because of its secure and supportive atmosphere, would be the least

scarev place to start looking at group problem solving.

For this I'd even go to Kingston!
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PATTERNS OF EMOTION WITHIN MATHEMATICS PROBLEM-SOLVING

Frances A. Rosamrld

Department of Mathematics

National University

Paper prepared for. the Panel on "Mathematics as a HumanisticDib:zipline"
presented at the Joint Mentings of the MathematicalAssociation of America and the American Mathematical Society,San Antonio, Texac, January 1987.
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I like the clever twist' of logic that turn a two
page proof into a one-half page proof. There are
lots of clever little insights. Th e's something
very satisfying about a nice tight argument that no
one can doubt is correct...I've worked on a research
problem for over six months with no results...now I'm
starting to dream about it and that's too much..the
mathematics is taking too mch control over me.
(Angrily.) (Rosamond, 1982)

Mathematics often is viewed as the ideal discip-
line-pure rational thought dealing with ideal objects
to produce irrefutable arguments, not coloured by and
emotion. Training in mathematics is seen as
producing students capable of such clear thinking in
all disciplines. So why don't all mathematics
teachers present mathematics in the ultimate,
Bourbaki style? To mathematize is zupposedly part of
the human condition, so how can there be such a thing
as math anxiety, when feelings should clearly not be
a part of learning in mathematics?

Or does mathematic arouse emotion because it was
conceived out of emotion in the first place?...What
is the link between the affective and the cognitive?

(CHESG An-...uncement, 1985)

PATTERNS OF EMOTION IN MATHEMATICS PROBLEM-SOLVING

In an effort to understand and exricate th feelings of
satisfaction and anger expresssed by the mathematics graduate
student in the first quotation, a Workshop on the Role of
Feelings in Learning Mathematics was held during the Canadian
Mathematics Education Study Group annual meetings of 1985 and
1986. We engaged in a problem-solving exercise that also was
given to six mathematics education graduate students at a State
college and on two occasions to six people wl-o mct in a private
home.

We are all (with the exception of two people) involved in
mathematics as professional mathematicians, as teachers, as
graduate students or as people who use mathematics In our work.
We believe that thinking, feeling and accIng work together, that
true understanding implies feeling the significance of an idea,
and that our experiences are not far from that of our students.
Wo decided to examine our own feelings !a depth in hopes of
finding outstanding commonalities that could be used to improve
classroom teaching.

Studies on cognitive science (Davis, 1984. Papert, 1980),
problem - solving (Silver, 1985), metacognition (Schoenfeld, 1983)
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and belief systems (Perry, 1970) offer some insight into the role
of emotions in problem-solving but only indirectly. We are not
sure we have even a vocabulary with which to describe feelings at
a specific moment as a function of many variables.

To begin with, we .Ade a list of 'relevant positive and
negative emotion descriptors (see appendix). This list was
adjusted by the results of the exercise. The exercise is a
simple one. We went in pairs to different parts of the room
where one person agreed to be the problem-solver and the other
the observer. The rules were 1) The solver do his or her best to
provide a running commentary on feelings. 2) The observer keep
quiet, pay attention, take notes.

After a fired amount of time .(15 minutes, in later sessions
changed to 30 minutes) ail gathered and each observer reportfi on
what the *raves had done, focussing on the feelings. The solver
also revrted.

The roles were then switched, observer became solver.
Solver became observer. Another problem was presented and the
observation and reporting process repeated.

We feel many positive emotions (challenge, hope, zest,
satisfaction, etc.) when doing mathematics and wish to promote
these in our students. Lazarus is a noted psychologist at
University of California at Berkeley who has done extensive
analysis of the theory of emotions. In his paper, "Emotions: a
Cognitive - Phenomenological Analysis", he describes some of the
contributions positive emotions make to coping. Before
describing our exercise and the implications that we found for
teachi-g, I will briefly outline some of Lazarus' position and
make some connections to mathematics.

LAZARUS ON POSITIVE EMOTIONS

Lazarus points out that negative emotions have been studied
almost exclusively. Some reasons for this are that emotions have
been studied as evolutionary and that negative emotions such as
fear or stress influence our capacity to survive. Another reason
is that emotion is studied by therapists who may view emotion as
pathological. In this case happiness may be seen as hysteria,
concern as paranoia and hugs as evidence of nymphomania. A third
reason is that it is more difficult to measure arousal for joy,
delight, and feelings of peace than it is for rage, disgust or
anxiety.

Because we are trying to promote good problem-solving, we
feel it is appropriate to focus on the positive feelings
associated with our goal: on hope rather than hopelessness,
challenge rather than threat, zest rather than dispair although
negative emotions do need to be recognized.

Positive emotions tend to be frowned upon or v.ewed as
"childish." Not many people exhort optimism like Ray Bradbury

76



does: "We are matter and force turning into imagination and will!
I am the center of a miracle! Out of the things I am crazy about
I've made a lifel...Be proud of what you're in love with. Be

proud of what you're passionate abocci (Bradbury, 1986) It is

ev..n hard to hear people shout gladly onto the Lord; but we were
just trying to hear people shout gladly about mathematics. People
who exhibit positive emotions often are accused of playing, of

not being serious.

Yet playing with ideas is inherent in mathematics problem-

solving. What emotions should we expect to feel when engaging in
problem-solving? Lazarus answers this by saying that the essence
of play is that it is highly stimulating. It is accompanied by

pleasurable emotions such as joy, a sense of thrill, curiosity,

surprise, wonder, emotions exploratory in nature. We recognize

that we do experience these positive toned emotions when doing

mathematics.

As educators we wish to know the optimum conditions that
encourage problem-solving. Lazarus says, "...exploratory
activity ucurs more readily in a biologically dated, comfortble

and secure animal than in one greatly aroused by a homeostatic

crisis. The human infant will not venture far from a parent

unless it is feeling secure, at which point it will play and

explore, venturing farther and farther away but returning

speedily if threstered or called by the mother." As shall be

discussed in more detail in the next section, mathematics
problem - solving requires playing in an almost "other-world" of

intense concentration. Insecurities in terms of math ability or
other issues (world pvace) inhibits problem-solving by

interferring with the level of concentration.

USES OF POSITIVE EMOTIONS

Lazarus sees at least three ways in which. a person uses

positive emotions: as "breathers" from stress, to sustain

coping, and to act as restorers to facilitate recovery from harm
or loss. Lazarus' discussion may be interpreted with mathematics
in mind.

BREATHERS OR TIMES OF INCUBATION

"Breathers" are times when positive emotion occurs as during
vacations, coffee breaks or school recess. They can also be

thought of as times of incubation.

Lazarus quotes the noted mathematician Poincare to suggest
that it may be the good feelings themselves that allow a solution
to emerge from the subconscious to the conscious.

Poincare made the surprising comment that unconscious

creative mathematical ideas "are those which, directly or

7
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indirectly, affect most profoundly our emotional sensibility."

By this he meant that, since creative thoughts are aesthetically

pleasing, the strong, positive emotional reaction to such ideas

provides an opening through which they are ushered into

consciousness.

Lazarus reminds us of another relevant description of a

"breather" made by the great German physicist Helmholtz:

He (Helmholtz) said that after previous investisations

of the problem "in all directions...happy ideas come

unexpectedly without effort, like an inspiration. Po far as

I am concerned, they have never come to me when my mind was

fatigued, or when I was at my working table...They came

particularly readily during the slow ascent of wooded hills

on a sunny dal'."

The acceptance of the role of a breather is reflected in the

usual advice given by teachers to their students: "Concentrate

long enough to get the problem firmly in your mind and to try

several approaches. But then take a walk or do some pleasant

activity and let your mind work on the problem for you."

SUSTAINERS OR MOTIVATORS

Positive. emotions act to sustain problem-solving is the

sense that good feelings build on good feelings. Mathematics and

the word "challenge" often are linked together as in "The problem

is a challenge." A challenge can be viewed as a threat and in

our exercise, probl?m-solvers were momentarily worried about

failure in front of an observer. However, in challenge, a

persons thoughts can center on the potential for mastery or

gain. This challenge is accompanied by excitement, hop.,

eagerness, and the "joy of battle." All these positive emotions

were mentioned by problem-solvers. One solver summarized the

feeling as "the joy of mental engagement and the bringing of all

mental force to bear in a cohesive way." Solvers who perceived

their problem as too easy felt disappointment even before they

began to work on the problem. Those who felt the problem worth
working felt an immediate joy even before proceeding. This joy

was a signal to bring all mental force to bear on the problem,

which in itself produced pleasure and therefore motivation to

continue.

Lazarus describes "flow' ,an extremely pleasant, sustaining

emotion, as in the case of the basketball player who is "hot" or

the inspired performance of a musician.Lazarus claims flow arises

when one is totally immersed in an activity and is utilizing

one's resources at peak efficiency. Mathematical problem-solving

requires total immersion and we found that a comfort with

notat.on was important in maintaining this flow. Comfort with

notation will be discussed later in this page :.

The positive emotion of hope also provides motivation to
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keep going. Occasionally during a problem-solving episode the
solver lost control of the problem. Solvers said, "I've lost
control of the problem." or This is too complicated, too many
angles to label." or "I feel this is getting a little out of
hand. This one and that one cancel out and I haven't used fact
that it's a prime." Hope, the belief that there is even a slim
chance things will work out, helps one continue. Ambibuity
nurishes hope. One cannot be hopeful when the outcome is
certain. We would like to know how ambiguity can serve classroom
mathematics. The emotions of challenge and hope are powerful
motivations in problem-solving and deserve further research.

A more obvious way in which emotions sustain actions is in
terms of longer range goals. The student who has a positive
feeling solving one math problem is more likely to try another.
The confidence that comes from understanding mathematics empowers
the student to attempt new ventures also, as in the case of a
geometry student who attributes hin decision to help an crime
prevention directly to his success in his geometry class.

RESTORERS

Lazarus offers a third function of positively toned
emotions, that of restorer. Lazarus' descriptions of recovery
from depression or restorations of self-esteem might be useful to
the teacher dealing with math-anxious students. Lazarus quotes
Klinger:

At some time during clinical depression patients become
unusually responsive to small successes. For instance,
depressed patients working on swill laboratory tasks try
harder after successfully completing a task t%an after
failing one, which is a pattern opposite to that of
nondepressed individuals, who try harder after failure.

It would be worthwhile for the classroom teacher to know when
small successes are more likely to evoke positive emotions.
Offering a small task to a math anxious student may foster
optimism and incentive while the same problem may seem trivial to
a non-anxious student, and provoke anger or disappointment. This
is an area for more research.

Much of the information on emotion In problem-solving is
obtained by having students fill out questionnaires. While the
information is useful, a rating on a scale from one to five of
confidence in loing math, liking for math, OF usefulness of math
is very general. Questicnnaries also 1:e rImcte from the actual
process of problem-solving. Recollections of feelings might not
be quite the same As the feelings at the time. Also,
mathematical problem-,, lying requires intense a'tention to the
problem. It is likely that without some help a solver will not
even be aware of his or her emotions. The above .easons together
with the belief that our own feelings when doing mathematics are
the same as those of our students prompted us to do an exercise
'utilizing a close observer and introspection.
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OBSERVATIONS FROM THE EXERCISE

Altogether the exercise of observing, reporting, solying,reporting was done by 19 pairs. Problems initially were If `thepuzzle variety (Gardiner,1967, 1979. Mott-Smith, 1954) but inlater sessions more substantial problems were chcsen fromHonsberger. One person kept track of time for the whole group. Agroup of six people (three pairs) seems the best size. Weposture...laughter...intent stillness" but that description isnot 4se6 in this paper.
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EMBARKING ON THE PROBLEM-SOLVING

Solvers accepted their problems with curiosity and positive
anticipation. These were people who did
formal mathematics frequently. Two people who had not done
formal math recently reported terror.

The initial reading of the problem provoked a reaction to
its type followed by a sense of its difficulty. "I anticipate I
will enjoy this problem but may not make much progress." or "I
loathe this type of problem . It is do-eble but will require a
big effort. I think I will have to gip through many tedius
decompositions."

The word "do-able" was used often and meant either that the
problem was solvable or that progress could be made in
understanding the question. For one of the people who reported
terror, a person who rarely uses formal mathematics rarely and
who was talked into coming to the workshop, considerable time was
spent blocking the reading of the problem. Emotion can be
regulated by avoidance or denial. This person acknowledged
feeling bad but then felt bad about feeling bad so that "Even if
I could do it I couldn't." Considerable time was spent recalling
past history of problem solving failures all the while avoiding
(somewhat consciously) making the decision to try to do the
probl ',m. Accther solver also reported "I felt unhappy and then
felt unhappy about feeling unhappy." Emotions tend to feed on
and reinforce each other. The math oriented solvers were
predisposed to extend effort on the problem. They had much more
commitment to do math.

After reading the problem, all began to develop a notation,
to draw a diagrar er to write some hypothesis. This was the
beginning of a cycle of attention on problem - attention on self
or distraction by environment - attack on problem - attention to
self or environment - problem - self - problem - self, etc.

When preparing to choose a method of attack, there was
considerably emotion tied in with "not cheating." Each person
placed the problem in a certain context and at a certain level of
difficulty and felt it would be cheating, bad sport, to use a
technique that was too powerful. One solver says, "Can I use
fancy stuff?... Then I'll use Jordan Curve Theorem....laughs".
Backtracks. "Maybe an easier way." Another solver resisted but
finally made a grudging commitment to using calculus for a problem
entitled, "An Obvious Maximization."

Using brute force was considered almost as bad as using a
too powerful method. "I'm annoyed because I can't see any other
way than brute force and that would net yield for me any
understanding of the problem...there must be an easier way."
Solvers wanted to find solutions that were generalizable. Using
a too powerful method, brute force, or an "obvious method"
brought forth comments of feeling embarrassed or annoyed.
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A less conscious resistance to cheating was the seen in theimposition of ridiculous
restrictions on oneself. For example,one solver had Honsberger's book in hand and was to "Use the'Method of Reflection'

to...". (Honsberger, p.70). The solver'sreaction was, "I understand the problem but don't know thismethod...I wish I could read the chapter..." . Instead of sinplyreading the chapter, the solver tries to invent a plausibly'Method of Reflection'.

Another solver spent long moments seemingly aimless. "I'mfeeling a little out of control of the poblem...lets ofparameters...seems to be a lot of ways to define thisproblem...I'd like to clarify the problem by asking whoever wroteit." Finally with a forced air, "I could break it up into casesmyself and come to grips on my own terms and get partialsolutions...got control back."

Self imposed restrictions would slow a solver down untilthere were reports of, "I'm squandering time. I really haven'tdone anything." Then there would be a squaring of the shouldersand a businesslike
assertion to "...take a stand and try to proveit ..." even though thin might mean grinding out a meaningless,albeit correct, solution.

INVOLVEMENT WITH THE PROBLEM

once commitment was made to attempt the problem, there wasa lorelai seductiveness about it, a delicious slipping off intoanother world. Solver became oblivious to self, observer, orenvironment. This total immersion was a wonderful release fromdaily life. Poland (CMESG, 1985) used mathematics to help himignore the pain of an illness. Some people use the other-worldquality of doing mathematics to avoid interaction with peers.Mathematics can help with depression as the famous mathematicianKovaleyskaya said in a letter: "I am too depressed...in suchmoments, mathematics comes in handy, and one enjoys the existenceof a world completely
outside of oneself."

(Knopp, 1985).
Mingled with the charm of seduction there was a dangerousquality, a frightening

isolation if one stayed immersed too long.Rosamond (1982) gives examples in which the solver feels consumedby a too dominating mathematics. As one mathematics graduatestudent said with tears in his eyes, "What do you do if you are88 - 90% mathematics?
If you've let yourself become consumed bymathematics so that that is what you are. And then you want tolet someone get to know you. What do you do when you can'texplain that much of yourself zn them?" The presence of theobserver comforted the solver and lessened the dangerous qualityin the isolation.

There was a letdown feeling of disapointment
if the solutioncame so easily that little emotion needed tc Le invested in inthe problem. Typical is the remark, "The problem must have beentoo easy, I got it. So what's the big deal? I feel let down."
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or "I was fun but not intense because not a challenge. I feel
let c.own because I didn't spend a lot of emotion." The
comrleAity of the problem came like a revelation to one solver
who then responded with a BIG smile. Overall, the amount of
satisfaction with the problem correlated directly with the
intensity of concentration. The perceived level of difficulty of
the problem also influenced satisfaction and this will be
discussed later.

However, one cannot maintain a constant level of intensity
throughout the solving of a problem. The use of notation in a
ritualistic manner erovidee a "breather" or monen of relaxation
while allowing the solver to rfmain in the "othe Aorld". When
no progress was being made on a problem, the solver remained in
the intense state by writing out some formal routine. Some
solvers would rewrite the definition of the variable. One solver
began, "There are two cases: a) the problem is solveable and b)
the problem is not solveable.c Almost everyone used x's and y's
at one time and then decided to switch to a's and b's (or vice
versa). Some world say, "I'm going to try induction." and then
write out the induction hypotheses. The rote writing out of
hypotheses or the rote switching of variables afforded a lull
within .the other-world state and continued the flow. The
importance of these rituals was to help focus on the problem. To
sit too long without progress or a ritual meant the solver would
think about self again.

Other pauses also bump one out )f concentration. When the
solver paused overlong in appreciation of some success, then
attention tended to turn to self or environment. The jolt of
finding a counterexample to a hoped-for truth caused one to
notice the ticking of the clock or the coldness of the room.
Extended frustration of method caused recall of poor geometric
visualization in the past and then embarrassment. Attention was
divorted from the problem to the se.a. This usually was for a
brief amount of time, less than a minute. Solvers would look
around, sigh, stroke the pen, scratch, talk a little and then go
back into the problem.

Most solvers were engrossed in the problem when time was
called and these people were irritated at being interrupted.
They almost all mumbled "I'll continue later." Solvers who were
in an attention-outward part of the problem-solving cycle just
prior to time being called generally sat back and waited out the
time. They did not work on the problem further while waiting but
mentioned that they would return to it later. There was
reluctance to allow oneself to get lost in a train of thought and
then yanked out of it.
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IMPLICATIONS FOR THE CLASSROOM:
VARIABrES THAT INFLUENCE ENGAGEMENT

The primary goal O. our exercise is to improve classroom
teaching. It would be useful for a teacher to know what a

particular emotion looks like. For example, a teacher who knows
that yawning is a release of nervous tension and not an

indication of boredom have an immediate and obvious clue that a

student needs help. (And the teacher knows not to get personally
insulted by the yawn.) In the opposite direction, the teacher
who wants to indicate positive emotions to the students would
know how to do it because he or she would know what they look
like.

To this end we took notice of some physiological indications
of emotive arousal (flushed face, sweaty pelms, muscle tension,
etc.) and.of body movement (twitching, sighing, laughing, etc.)
but more work should be done here and these indications are not
elaborated on in this paper.

We found that overall satisfaction in problem solving is

directly related to the intensity of engagement with the problem.
The engagement is influenced by several variables: the nature of
the problem, the perceived usefulness of mathematics, the role
of the observer, the use of mathematic: L/tuals, and the testing
situation. Each of these variables wil. be discussed along with
-their implications for the classroom.

NATURE OF THE PROBLEM

All solvers were more encouraged by harder problems than by
ones marked "obvious" or ones perceived as easy. There had to be
a sense of value of the problem, not that it must be directly
applicable to daily life, but rather that one needed to think in
order to understand the problem. If one could get the answer
just by asking someone else or by looking it up then that mad*
the problem artificial and was almost an affront to the solver.

Surprisingly, solvers felt threatened whenever they saw the
words, "Clearly", "It is easy.", or "Obviously". Most felt that
teachers should not say, "This is easy." and that textbooks
should not indicate the easy exerc'les. Solvers sometimes
worried that the problem looked so simp s. They felt they were
missing the point and that their solution was not elegant enough.
One solver found three solutions by varying the constraints and
then felt less humiliated.
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One solver exhibited obvious arousal with eyes wide open,

clear face and a slight laugh. "Hey, there's an infinite
process..." Exploration didn't bear out infinite process and then
there was "That was neat. What was the problem?" together with a
clear drop of interest and rather emotionless settling again into
the problem. The challenge of the infinite process
stimulated playing around in the "math-world."

The math-world is a mental out-of-body arena of intensE
concentration in which a person can play with ideas. Trivial
problems do not meke good play-mates. One solver's most
satisfactory experience of problem-solving came after having
spent a week on a problem only to have the professor tell the
class that the problem was not solveable.

Solvers felt initial relief ai seeing an easy problem but
were quickly bored, disappointed or insulted. The classroom
teacher must pay careful attention to the quality of problems
offered and should not label them easy or difficult.

USEFULNESS OF MATHEMATICS

Doing mathematics is seductive but one must allow oneself to
be seduced. Three different participants at three differen_
sessions (all women) felt that going off and doing mathematics
was a luxury. A teacher of older women said she had to convince
her students that they were not squandering time while problem
solving. Women are always productive. They even knit while
watching TV. She got around her stuuents' hesitancy by saying,
"I'm going to show you some games to teach your kids and improve
their math."

The notion of usefulness was mentioned by only c.hree women
but it is a construct that has been singled out as the most
impurtant attitudinal factor in decisions to take math classes
(Sherman and Fennema, 1977.)

Usefulness was elaborated on at length by one solver waho
was able to solve the assigned problem in a short time and with
no intense engagement. The solver was disappointed and felt
letdown. It was not clear if tee following remarks would have
been made had the solver been given a more engaging problem. I

asked at the time bat 'tee solver was very agitated and insisted
that another problem vs I have made no difference.

"What would have beeen a meaningful problem?
How come I'm not satisfied? I had an expectation
about solving that problem that did not get fulfilleu.
It didn't make me happy. There were some moments of
tension and some of excitement but not intense. It was
eneertaining like a grade C movie.
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"Math has no social relevance to me...I am willing

to solve math problems, even ready but it feels
completely disjoint from what interests me. I still
love it (This solver has a Masters degree in math and
is an active MD.) but its importance seems miniscule
compared to world problems...beautiful but frivolous to
use my mind in this way." (It would be useful for
other people to do math but there were more pressing
issues for this particular solver.)

Usefulness of mathematics in terms of careers or its
sometimes theraputic value es a means of escape is an affective
variable that may be easy for teachers to Influence, Teachers
can present information about the mathematics required by various
careers as well as the mathematics courses that should be taken
to keep options open in the future.

THE USE OF R1YUALS

The use of formal routines that keep one's attention on task
while providing a sort of restful interlude speaks directly to
the classroom teacher. Students must have a comfort with
notation not only becausd the notation itself sometimes points
to the solution but because that comfort sustains concentration.

ROLE OF OBSERVER

Contrary to almost everyone's expectation, having someone
observe while working the mathematics was positive. At first,
some solvers felt less inclined to free associate with ideas in
front of an observer who might have the problem already all
figured out or the solver sometimes felt that the observer must
be bored. Some solvers wanted to talk things over with their
observer or would look up at the observer hoping for
confirmation.

It turned out that the presence of the observer was an
impetus to persistence in doing the problem. This is a very
important point. Liking the problem was directly and positively
related to the amount of time spent working on it. Almost
everyone liked their problem more the longer they worked. Those
that did not like their problem initially began to like it after
all and to get interested in it. Without an observer, those
solvers might have quit.

Bein' observed evoked °User feelings. As noted earlier, the
presence f an observer reduced the feeling of danger in
isolation that lengthy Ameesion in the problem sometimes
brought. There was a feeling of honor. "I felt honored that
another peson was taking the time to observe me." Another
feeling was intimacy. "It felt intimate to have someone commited
to watch the workings of my mind."

While more emotion seemed to come from being watched, is was
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also important to be the watcher. Watching seemed to take away
some of the secret charge of the observer's own problem-solving
anxieties. The observer could recognize his or her own feelings
in the other person and see how the feelings influenced their
actions. Watching another person struggle with anxieties made
the solver think, "Why don't they just get on with it."

One participant reported, The most poignant part of the
exercise was hearing the observer say what I'd done. I did not
feel intimidated. I didn't get any of the bad response I

erpdcted. The observer demystified my emotional and intellectual
engagement by simply listing what I did: 1, 2, 3, 4. This cut it
down to size, gave it true proportion."

This exercise of being cbserver then reporter, then switching
to being solver then recipient of report should be explored as a
means of eliminating math anxieties in our students. Tne real key
is the switching. This exposes and throws out the power of
negative feelings while encouraging positive ones.

It should be noted that no one argued with their observer.
A few points of clarification were made but there were no
misinterpretations. It is possible that finer gradations or
other categories of feelings can be made, but there was good
corresvldence within our vocabulary.

THE TESTING SITUATION

Concern &bout the nature of the problem carries over into
the testing situation. One solver commented on the problems
found on math ..ests. "A test is an almost random set of narrow
problems where one thing must trigger another. It is not about
figuring things out. Test questions do not show that math is a
process." This solver had as a partner a professional research
mathematician. The solver was not intimidated by being observed
even though the problem was not solved because The observer
could hear that I have math training. He could see how my math
mind works, how I assimilate information, manipulate, and use an
&arsenal of strategies. This is so much different from taking a
math test where I am not tested on how my mind works. On a math
test, I could expect not to be able to show what I know. I would
feel shame."

Part of almost any testing situation is a time constraint.
Having only 15 or 30 minutes annoyed and inhibited these solvers.
Some reported feeling "hemmed in.;.I do best by playing
around...ordinarily would draw pictures and really
understand...build up a pattern." Another felt pressure to
categorize a solution method quickly. "Without a time constraint
I probably would have been more impulsive...would have guessed
and then worked backward. I felt forced to be more systematic,
meticulous, more step-by-step arl mechanical. I think I could
have solved this in a shorter amount of time if there had been no
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time limit."

When the timing %n itself counts, it is as though what the
problem means in itself is not enough. Perhaps the discomfort :of
a time constraint forces one's attention to be divided between
the math-world and present time. Not only are different methods
of solution chosen at the onset of the process, but also the
total immersion into the prohiem -world is not as posLiblt or as
deep.

CONCLUSION

It is important to state that a basic assumption of this
experiment is that we professional teachers and mathematicians
have at least the same feelings that students have. We may
experience a difference in intensity (less anxiety, more
confiJence) or have other feelings in aLditlon (sense of
commitment) but overall how we respond gives an indication of how
our students respond. A mathematics educator refused to
participate in our exercise saying that it might be worthwhile
for "personal growths but that it would give no insight into how
students feel. He believes tnat teacher feelings are completely
diffc rent from student feelings.

But imagine your feelings if the Chair of your Math
Department suddenly announced that you must take a test. If you
have not taught a particular course in the past two years you
must pass a test before you can teach it. What course are you
scheduled to teach that you have not taught recently? What is
your reaction to your Chair's announcement? You are not being
tested on how well you review the materal during the semester or
on how carefully you prepare your lessons. You are not being
asked to share ideas with a colleague. You are being evaluated
on questions someone else has chosen and already knows the
answers to. I think your reaction to this thought-experiment may
show that seasoned teachers can feel anxiety in a test situation
similes to what their students feel in their test situations.

The act of knowing is not antiseptic; rather it is wrapped
in feelings. It is the engagement of feelings. The primary goal
of our work is to imnrove classroom teaching. Thii paper
indicated only a few of the emotions inseparately connected
within mathematical activity and specifically calls the
classroom teacher's attention to the nature of th., problems, the
perceived usefulness of mathematics, the role of observer, the
use of mathemati:m rituals and the testing situation.
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REPORT OF WORKING GROUP B Lars Jansson & Gila Manna

THE PROBLEM OF RIGOR IN MATHEMA-ICE. EDUCATION

Funk and Wagnall's Standard Dictionary (19130) ii..es the
following definitions for the term "rigor:"

1) The condition of being stiff or rigid;

2) stiffness of opinion or temper, harshness;

3) exactness Nithout allowance or indulgence,
inflexibility, strictness.

These dictionary definitions of "rigor" notwithstanding,
the group did not seem to have a clear idea of what the term
means, although it was evident that we wished to avoid its
association with mortis. In order to focus our discussions we
attempted to follow an outline which directed us to I! the
nature and function of rigor in mathematics, and 2) the place
of rigor and proof in teaching.

As an exercise to be completed before the second session,
each member of the group was asked to rank order four different
proofs* of Pythagoras' theorem with respect to three criteria:

i' Which is the most rigorous?
ii) Which is the mos'. convincing (to you)?
iii) Which one would you use to convince a nonmathematical

friend of the truth of the theorem?

It turned out to be very difficult, if not impossible to
reach any consensus on a rank ordering of these proofs in terms
of how rigorous they were. This led to a discussion of what
one means bu the term 'n the context of our deliberations the
term "rigor" referred to rigorous proof). Rigorous proof is
the procedure used in an agiomatic system to demonstrate the
truth of a theorem in that system. The system should comprise:

1) a number of axioms
2) rules of inference
3) theorems (derived truths).

It was immediately recognized that this ideal can rarely
be reached in practice with respect to major branches of
mathematics in their entirety. Rigorous agiomatic
presentations of small systems, e.g., games, were, however,
recognized in subsequent discussion as being more easily
attainable. We thought it important to speak not of absolute
rigor as the property of activities within a well defined
system, but of degrees of rigor within a system that is not
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completely defined. There were suggestions for definitions of

"more or less rigorous:*

1. An argument is more or less rigorous to the degree to

which it ie free of unstated assumptions. Th- more it uses

unstated -ssumptions the less rigorous it is.

2. A purported proof is rigorous it it is free of holes

and it cannot b' attacked, i.e., it nothing can be added to the

chain of reasoning to improve it and it all of the analytical

s'aps have been made explicit and are correct. It is "less"

gorous to the extent that these conditions are not met.

3. When the context of the proof is not analytical, e.g.,
proofs without words, the concept of more or less rigorous is

not relevant. (Some group members viewed such a "proof" as only

a schematic outline which could be expanded into a proof in
various ways and of various degrees of rigor).

In the course of the de)iberations we found out that

- Some of us are "unconcerned with rigor' in the teaching

of mathematics--and unapologetically so.

- The authority of known mathematicians and of respectable
textbooks or publications play a large part in our acceptance

(although not in an absolute sense) of proofs, even in the

absence of all of the analytical steps.

- A detailed and more rigorous pr )f may enhance the
understanding of a theorem, but it also may hinder or

contribute nothing to understanding.

- The degree of rigor desired seems to be a matter of

taste and judgment depending on context and content. Demands

for rigor rise and tall in history and depend in part on the

function of the proof: ritual, validation, convincement. . . .

- The fact that mathematics is a social activity occurring
in a social context and the need to communicate mathematics are

very important to the notion of a desired degree of rigor.

- rigorous argument may exist in other disciplines--it is

not peculiar to mathematics.

The group moved in the second session to a discussion of
reasonable expectations of high school graduates regarding
their knowledge of proof and rigor. Some expectations were:
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- the realization that conclusions must be Justified and
that this is part and parcel of mathematical activity);

- a knowledge of the role and function of axioms,
definitions, theorems, proofs, and conjectures, and the ability
to use these properly in a chain of reasoning; s

- the ability to develop and sketch an argumentiproof and
the ability to defend or attack an argument/proof;

- some sense of the social conventions surrounding proof
and rigor, e.g., the ability to distinguish between what
constitutes a plausible argument and what constitutes a proof;

- we should be more concerned with rigorous thought and
argumentation than with stylized written proof.

With regard to developing the above a$,lities and
attitudes in students, some felt that

- mathematics which is exclusively content (as opposed to
process) oriented is of limited value;

- that in order to develop the notions of proot and rigor
a teacher may well have to rely on traditional content as a
vehicle;

- a useful pedagogical technique is to

- convince yourself
- convince a friend
- convince an enemy.

The final session focut.sed on wha' we could say to
teachers' groups or curriculum committees regarding rigor.
There was general agreement that teacners should:

1) emphasize the need for Justification in drawing
conclusions;

2) teach proof procedures in context rather than in
abstract form;

3) provide students with oppo.'tunities to work on problems
and situations which lead to observation of patterns,
conjecture, justification, and looking back.



87

4) try to adjust the level of rigor (or of sophistication
of the proof?) to the mathematical abi'ity of the
students.

Discussion on the content vehicle revealed that most
mathematical topics were suitable for obtaining these four
objectives. (There were a number of a number of pleas for
geometry at the junicr or senior high school level.)

A number of short readings were distributed and/or recommended
during the sessions of the working group. Those that are
available in other sources appear in the attached reading list.
Post-conference comments on rigour are provided by David
Wheeler, Ralph Staal, and Jarg Volgt.

*The proofs were

1) the standard proof given in Euclid
2) the Chinese 'proof without words"
3) a proof using the inner product of vectors
4) the proof using the altitude to the hypotenuse and

similar triangles.
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POST-CONFERENCE COMMENTS ON RIGOR

by David Wheeler

Much of the discussion I found interesting, stimulating and
helpful, yet I am left with a feeling that perhaps it was a pity
that the focus of the group was on rigour rather than on, say,
proof, mathematical reasoning, or some other more general
conception. Rigour in mathematics seems such a specialised
notion, far from what i-ears to me to be my central concerns
about mathematics or mi.Jlematics teaching.

Probably the difficulty for me is that rigour in mathematics
is essentially a technical matter. There is the formal apparatus
of axiom, postulates, definitions and theorems, all embedded in a
particular mode of deductive logic. Now I would grant that this
apparatus has had two general consequences within mathematics: it
has (1) encouraged some mathematicians to work on a clarification
of the foundations (Peano is a good case in point) and (2)
generated considerable activity in this century around the
powerful concept of mathematical structures (Bourbaki and so on).
Even so, the majority of professional mathematicians proceed on
their ways ignoring the matter of rigour, and I am forced to
wonder what possible application this technical stuff can have in
the education of students, of novices, of people whose principal
concern should be with knowing how to mathematize.

The pity of it is that the very special methods of ensuring
(or approaching) mathematical rigour actually tend to reduce the
attention educators give to rigour in its more general sense, that
of 'close reasoning'. We can speak of rational arguments in any
field as being more or less rigorous, and we sometimes refer to
particular persons as 'rigorous thinkers" (or not, as the case may
be). This general appreciation of the value of rigour is very
important, it seems to ma. It gives a high valuation to such
things as weighing evidence, being clear about one's assumptions,
being careful about the validity of the steps in an argument,
explicating the consequences of an argument even where these are
not the onms hoped tor, and so on. Some competence in this
difficult art would serve any adult. I emphasize the word 'art" to
indicate that close reasoning is (in the present state f our
knowledge, at least) something only a person can produce. The
slight amount of evidence that computers can presently generate
rigorous proofs in fact dismays me because it tells me that
important ingredients of the process are being ignored.

It has often been claimed that exposure to mathematics helps
students acquire general thinking skills. I believe that it could,
but it hardly ever does. Mathematics is still largely taught, in
spite of centuries of advice to the contrary, as a body of skills
that can be imitated without understanding. Taught this way it
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actually damages students' thinking powers (as can be seen in the
substantial number of students who have become convinced that they
are mathematically stupid). There is no doubt that mathematics
could be used as a medium for encouraging careful thought. Put how
often in traditional classrooms does one hear teachers make
interventions the` promote attention and foster careful argument?

- Look at what you have done!

- Listen to what you are saying!

- Is she right? How do you know?

- Are not "this" and "that" contradictory?

- Would what you have said still be true it you
substituted 'this" for "that"?

- What have you forgotten?

- Can you convince John you are right?

Do you need to use so much energy? Find a simpler

- Do not tell him! He can decide that for himself.

way.

Mathematics is a very suitable medium to use in encouraging
students to exercise reason since it relies very little on mature
interpersonal experiences or sophisticated intellectual concepts,
which students don't have, but a lot on immediate perceptions and
fundamental mental operations, which they do. (How else could
there be prodigies?) Once the habit of reasoning in mathematics
lessons has been taught, arguments can be scrutinised and revised
and made more rigorous. Eventually the students will come to see
what a proof is. But this is a developmental process that takes a
number of years. To offer the model of mathematical rigour
enshrined in the axiomatic approach to school students is totally
inappropriate.
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by Jbrg Voigt

. . . I enjoyed the working group and found the sessions
quite interesting, especially because I was forced to think about
the connections between rigor in mathematics and rigor in

mathematics instruction. I agree with the report and will try to
sum up my ideas of rigor.

I think that rigor in the presentation of mathematics should

have little relevance to mathematics education, but rigor should

be important for the discourse processes in the mathematics

classroom. There rigor could be an implicit element of the
discussions. Somewhere Hans Freudenthal wrote: When does
reasoning begin with the pupil? Before it is termed as proof or
the like.'

With regard to Vygotsky, Wittgenstein and others the
development of mathematical thinking depends on the experiences
gained by the pupils in the social interactions between the
teacher and the pupils. One task of the teacher is to organize
mathematics instruction in such a way that the processes of
arguing interactively constituted are preliminaries of individual
rigorous thinking. Surely, the teacher should have some knowledge
of logic, but the problem is to see the lines of argumentation in

the classroom processes and to organize them. The problem is the
connection of the knowledge of logic with the practice of teaching
in a specific context.

I have similar findings in mathematics classrooms to that of

Thomas Russell in science classrooms (J. of Research in Science
Teaching, 1483, v. 20, n.1): Often the dynamic of the social
interaction replaces the rationality of argumentation. In

classrooms the teacher's authority was established for the social
organisation of teaching and learning, but it is at the same time
a menace to the learning process.

would
If I had to work with mathematics teachers in this context, I

- make them solve mathematical problums in
- videotape the group work, and
- let the teachers reconstruct the lines of their

argumentation.

little groups

In this case, the teachers could notice that it is important and
very difficult to do mathematics rigorously with other persons.

I concede that mathematics instruction could and should be
not an image of the ideal practice of reasoning in the discipline.
But the teacher's authority should not be a substitute for the
rigor of mathematical rationality.
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by Ralph Staal

I found much of the discussion confusing, because although
the chairman began by pointing out that "rigor" is a relative
term, some participants continued to use it apparently in an
absolute sense, as in "I don't believe in rigor at this level."
This absoluteness could be an acceptable convention. except for
the fact that it wasn't said what this absolute sense was. Ananalogy would be when someone says "I don't have any temperature
in my office."

Another example of ambiguous terminology was the failure to
distinguish between:

I. The degree of rigor of a proof that P implies 6)

2. The degree of rigor of 1 proof of (A -- this proof using P,
where P itself has been established on either more or less
rigorous grounds.

The difference is that in (1) the degree of certainty of ourknowing that P is true is irrelevant, whereas in (2) it isn't.
This makes a great difference in talking about rigor in
mathematics. Unfortunately, it takes a good deal of persistent
effort to maintain the distinction.

With this much variation in meaning, it was not surprising
that there was no consensus as to the ranking of four proofs of
Pythagoras' theorem with respect to the three levels of rigor.

In our discussions, there seemed to be a strong undercurrent
(hard to point to, but felt to be there) of wanting to show thatthe association of mathematics with rigor (presumably mesni,ig
`being very rigorous") was naive and was in need of correction.
In my opinion, this point of view is often the result of 'put-down
through imperfections" by which one can show that there is no such
thing as truth, or beauty, or objectivity, or justice, or
virtually anything worth talking about. The study of fr-vIdutions
of mathematics does make one aware of the elusiveness of ,ihsolute
or perfect rigor, but a thoughtful perspective on this matter
nevertheless puts emphasis where emphasis is due, namely rn the
extremely (perhaps even uniquely) high degree of rigor !nth which
mathematics can be pursued.

With this perspective as a guide, I can see no reison to
modify the role of mathematics in education as stemmip to a largedegree from its association with

a relatively high dec 'ee ofrigor. (The work of Lakatos, so often misapplied, in ,$g opinion,
does not change this one bit--rather it shows how the search for
greater rigor leads one to more and more rigorous definitions ofconcepts.)
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The main speakers at the meeting, Ross Finney and Alan Schoenfeld,each joined the working group for one of the sessions.

REPORT

Initially the group discussed personal
experiences, direct andindirect, they had with teaching mathematics using computers andsoftware. The following points gradually emerged from theconversation of the first evening.

Careful selection of software is necessary' because:
a) there is a lot of

expensive software that has little educationalvalue;

b) of the current curriculum. At this early stage in utilizingcomputer as classroom
teaching/learning tools, is must fit theexisting curriculum.

Even good and powerful
software does not necessarily lead toeffective use. Teachers, both pre and in-servtce, need to devoteconsiderable thought in preparing to use computers to help in theteaching of mathematics.

Our discussion suggested that there is agrowing body of evidence supporting the computer as a valuableteaching resource yet it is difficult to assess its potential duringwhat is perceived to be an early stage in the development of thetechnology. Not only is the computer hardware undergoing continuousand rapid changes, but the development
of software with exemplaryfeatures is slow. In a recent article
published by members of theShell Center for Mathematical Education at the 'Iniversity ofNottingham, a research study over three school terms in a secondaryschool indicated the following:
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1) computer aided teaching will be successfully adopted if necesoary

resources are available, and

Graphical Adventure is available only for Commadore 64's while the

others were all Apple Ile packages (although some may be available

for other microcomputers).

It was noted that to examine a
software package as well as discuss it

in sore depth is deceptive. This working group found its time

quickly spent in the process. The group did not deliberately proceed

linearly through each package. We compared and contrasted features

as the discussion proceeded. The software that invariably drew the

greatest attention contained shat the group considered to be powerful

features. Invariably these necessitated a high, active participation

rate with the operator in control. For example, the geometric

supposers are able to draw, measure and repeat constructions only

under the direction of the operator.
tithout these directions it

will not do anything and the potential of this type of software can

only be explored if the operator is able to interact with it to take

advantage of these features.

During'one of the sessions Ross Finney demonstrated the Calculus

Student's Toolkit, a software package that he was involved in

developing.

b) computers seem to be very versatile teaching aids and there are

no grounds (at this time) for strongly recommending any
particular style of use.

These suggestions as well as the developing nature of the entire

field of computer use in education give negligable guidance and

direction for microcomputer use in teacher education. The use of

exemplary material in the average classroom with the average teacher

was briefly considered. Several group members described sessions

they had observed using the Geometric Supposer, a piece of software

they considered exemplary. In each instance it was suggested that

the scenario did not typify the average mathematics classroom with

the average mathematics teacher. The developers and users of this

software in these situations perceived that, because of its power and

versatility, students could be successfully drawn into an inductive

exploration or search for geometric truths, after which they would

concern themselves with developing convincing deductive arguments

(proof). They were behaving as geometers. Because of the features

of the Supposers, in that one has a draving and measuring tool which

permits the operator to quickly and accurately produce, measure and

alter geometric constructions, much of the drudgery and inaccuracy

related to ruler and compass constructions is avoidable. Equally as

powerful is the ability of this software to "remember" the current

construction and repeatedly repeat it upon request. This potential

permits geometric exploration and pedagogical approiches for teaching

geometry that were previously imaginary. Unfortunately many of the

seemingly best mathematically qualified, based on the amount of

mathematics studied, mathematics teachers have never personally

experienced learning mathematics in this way and thus fail to

appreciate exciting new possibilities.

As a result of the initial general discussion we decided to begin by

examining some of the software material available to the group. We

ended up devoting the rest of the working group sessions to a

discussion of the following software packages:

Apple Logo (Apple)
Algebra Arcade (Wadsworth)
Interpreting Graphs (Conduit and Sunburst)
Geometric Supposer 7 Triangles (Sunburst)

Calculus Student's Toolkit (Addison-Wesley)
Graphical Adventure (Saga Software)
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Sr. Rosalita Furey familiarized the group with the Graphical

Adventure which seemed to have considerable potential for the

secouAary curriculum (particularly at $14.95). Unfortunately it is

only available for the Commodore 64.
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Appendix 2

Appendix 1
Geometry via the Computer

SOFTWARE INFORMATION
Lesson X

1. Apple Logo

2. Algebra Arcade

3. Interpreting Graphs

4. Graphing Equation:
(includes green globs)

5. Geometric Supposer
(These are triangles,
quadrilateral and circle
versions as well as a
pre-supposer)

6. Calculus Student's
Toolkit

7. Graphical Adventure
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Apple Canada $ 150.00

Wadsworth Publishing
Co.
8 Davis Drive
Belmont, California
94002

Conduit

34.45

45.00 (U3)

The Mediums of a Trianelea"-- A

The University of
Iowa
Oakdale Campus
Iowa City

1.

Iowa 52242 45.00 (US)
2.

Conduit 45.00 (US)
3.

Sunburst 99.00 (US)

P.O. Box 3240 132.00 (CDN)

Station F
Scarborough, Ont.
M1W 929

Addison-Wesley

Saga Software
418 Gowlend Cres.
Milton, Ontario
L9T 4E4

14.95 (CDN)

8

The medium AD bisects BC.

98

by Roland Eddy

Calculate the areas of ABD and ADC.

Conclusion? (Equal)

Construct several triangles and their three mediums.

Conclusion?
A

8 .1)

4. Measure AG, GD, etc. Conclusion?
*(AG = 2/3 AD, etc.)

S. Calculate the areas of AGB, GBC, GCA. Conclusion?

(All equal)

6. Construct the triangle with sides AD, BE, CF and

construct its mediums. Verify that their measures

are 3/4 AB, 3/4 BC, 3/4 CA.
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Heron's formula:

Area s(s-a)(s-b)(s-c),
a+b+cs

Verify the corresponding formula

Area 4/316/4s(s-na)(s-mb)(s-mc)
sm ma+mb+mc

2

8. Verify: mat + nb2 + mc2 3/4 (a
2

+ b
2

+ c
2
)

9. Verify the inequality:

ma + mb + L 4R + r , where R,r

represent the circumradius and inradius respectively.

When does equality occur?

maw M. MP 1111111- MIN
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Report of Working Group D

The role of the microcomputer in developing

statistical thinking

by Claude Gaulin and Lionel Mendoza
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The group was a follow-up to a working group in Vancouver in 1983,

which had focussed its discussion on "the goal of developing

statistical thinking for all" as well as on appropriate topics and

methodology for a core curriculum. The report of the Vancouver

working group can be found in the proceedings of the 1983 meeting

of CHESG.

The objective of Working Group D in St. jo4a's was to investigate

the issue of how microcomputers could be used for developing

statistical thinking. Among the aspects initially proposed for

discussion were: software for teaching statistics,; graphical

representations of statistical distributions; simulations of

random experiments; and learning probabilistic and statistical

concepts through progressing. The preliminary discussion on the

first evening enabled the group to determine the focus for the

three three-hour sessions that followed.

The work and conclusions of the group can best be summarized by

dividing it into three phases.

Phase 1

This phase raiseu the difficult question of what was meant by

"statistical thinking". While no attempt was made to develop a

formal definition, the group agreed that the core idea of

statistical thinking was a comprehension of the nature of

representations, distributions, and inferential statistic, as

opposed to the ability to draw graphs or undertake statistical
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tests, per se. Also, at this stage it was decided to focus on the

role of the computer as a teaching aid, and not as a computational

aid (as epitomized by statistical packages). It also became

apparent in the discussion that the members of the group were not

aware of software specifically designed to develop statistical

thinking.

Phase 2

In this phase the role of the computer was explored. The group

mostly discussed how it could be used to VISUALIZE statistical

ideas and processes.

(A) VISUALIZATION IN DESCRIPTIVE STATISTICS AND

EXPLORATORY DATA ANALYSIS.

Utilising the computer here involves displaying a

variety of graphical representations (e.g. bar

graphs, pie charts, stem-and-leaf

screen. A particularly effective

visualization is having different

plots) on the

use of

data sets

SIMULTANEOUSLY DISPLAYED on the screen, enabling

students to interpret, discuss, and compare the

data. Alternatively, displaying the same data in

different ways develops an awarenes of the

advantages and limitations of different displays

and helps students to select the most convenient or

best illustrative representation from among many

possibilities.
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ANIMATION can be an effective aid for descriptive

statistics and exploratory data analysis. The

ability of the computer to 111ild up successive

representations as the data is entered (either from

pre-set data sets or student-collected data sets)

gives students a visual ivage for comprehending the

nature of the data.

(B) VISUALIZATION IN "INFERENTIAL STATISTICS".

Animation can also be used in developing

inferential statistics, an intuitive understanding

of hypothesis testing, and the notion of confidence

intervals. An example would be using the computer

to select samples cf a given size and building up

the distribution obtained by repeated sampling. By

varying sample size and the number of samples,

students can obtain a feel for the nature of

distributions and later on apply th:.s to the

distribution for a test statistic.

NOTE: Whether the computer is used to visualize ideas and

processes in descriptive or inferential statistics, the group

insisted that software should be INTERACTIVE, and not merely

DEMONSTRATIVE. It should allow the user to ask questions and

indicate displays that he or she would like to ace. Thus, the

interactive nature of the software requires a flexibility of

choice, beyond that of merely allowing the user to choose from a
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limited selection of options. It is important to stress that it

is the INTERACTIVE nature of the software and the DISCUSSION of

ideas generated by the display that leads to statistical thinking.

Phase 3

During the last working session, the group discussed the structure

of an introductory course in statistics for undergraduate students

in which the microcomputer were to be fully integrated THROUGHOUT

the course. The suggested components for such a course were:

1) Data "display" and interpretation
(Computer displays and animation used'

2) Exploratory data analysis
(Centrality, box plots,...]

3) Transformations of data
(log, log normal,...]

4) Uncertainty
(Exploratory games involving repetition]

5) Nonparametric statistics, sampling, etc.

A variety of themes occurred throughout the sessions, but time did

not allow us to discuss them in depth. The following are some

examples:
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1) The use of computers to simulate random processes.
}

2) The role of probability in developing statistical thinking.

This topic was raised at various times throughout the sessions.

The group felt that much could be accomplished in developing

statistical thinking without a detailed analysis of probabilistic

concepts, per Se. During these discussions a probability based

game designed to develop statistical thinking was presented by

Eric Muller. (See Appendix A).

3) The issue of decision making versus probabilistic thinking.

There is a fundamental difference in the role of probability in

the two situations. In statistical thinking a key aspect of

probability is the role of repetition within the situation and it

is 'assumed' that the situation can be replicated. However, in

decision making, while some probabilistic information aids in the

decision making process, it is usually not a repetitive situation.

4) The relationship between computer games/activities and the use

of real objects. How do students relate computer 'generated'

games/activities to similar real object games/activities? The

group was concerned that students (particularly young students)

might have difficulties effectively internalizing ideas developed

in computer situations without experiences with real objects.
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In conclusion, there is one point the group would like to make:

the group felt that it would be interesting to do further work

during the MSG meeting at Kingston, and suggesLad a working

group focussing on "Inferential Statistics for all High School

Students". In particular, such a working group would explore, the

following questions:

(i) How can the computer be used in conjunction with

other traditional types of teaching aids?

(ii) What is the minimum amount of probability needed

to study inferential statistics?

(iii) How can simulation be used in developing

inferential statistics?
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APPENDIX A

Developing Statistical Thinking

by

Eric R. Muller
Brock University

In this supporting document for the Working Group "The role
of the Micro-Computer in Developing Statistical Thinking" we con-
sider an activity which has been used successfully with groups.of
students anywhere from elementary school to university. Although
the activity does not involve the micro-computer the group spent
a considerable amount of time trying to isolate the conponents of
this activity which make it successful. Such components could
then be structured in micro-computer simulation activities.

4.Also submitted in modified form to the Ontario Mathematics
Gazette.
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Activity coDeyeipp_S.tatistical_Thinking

Materiias

1. 3oard with r positions, marked 1 to r, for positioning
coloured chips. The Board illustrated below has fourteen
positions numbered above 1 to 14.

2. 2 regular six sided die -- it is usafel to also have avail-
able pairs of the other four regular polyhedra (4. 8, 12 and
20 sided)

3. At least r/2 blue and r/2 red chips (or any other two
colours)

Z 3 4 5 6 7 8 so H U 13 14

00 0 0 0 0 0 0 0 0 0 0 0
51 pa PR 51 PI n SR n f41, Fl PR PR

Play

1. Two teams - teams of two students - work well as each student
has a partner to discuss strategies. One team given red
chips, other team given blue chips.

2. The two teams will alternate placing one of their chips in
the places provided on the board. The aim is to have a chip
in the position which corresponds to the sum on the faces of
the two dice when they ars rolled, eg., to have a chip in
position 8 if a (five and three) are rolled. To start one
of the two teams is selected, it places one of its chips in
the position on the board which it believes is most likely
to occur. The other team then places one of its chips in
one of the (13) unoccupied places. This procedure alter-
nates between the two teams until either (a) all positions
on the board are tilled or (b) one team no longer wishes
to place any of its chips, then the other team may occupy
all vacant positions.

3. The board is now set for n, (say 25) an odd number of rolls
of the pair of dice. Each time the dice are rolled the team
which has a chip on a position corresponding to the same on
the dice records points (single points at level 1, points in
the square below the position at level 2).
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4. The team with the most points at the end of n (say 25) rolls
wins that game.

5. All chips are now taken off the board and a new game may be
started.

6. The objective for each team is to find a winnil* strategy,
ie. a strategy for selecting the positions for their chips
which will provide the best chance for winning.

The following three levels of play suggest a natural progression
for statistical thinking. Some teams will not progress beyond
level 1. One must resist the temptation to provide solutions.
This activity provides an ideal medium for exploration and one
should only do the leading. We have always played with the fol-
lowing rules:

(i) Teams do not discuss their strategies with other teams.

(ii) When a team believes it has a strategy for winning :.dis-

cusses it with me. I will not indicate whether the strategy
is the best I know but I will change the team's opponents or
materials to either

or

(a) expose the possibility of a better strategy

(b) reinforce the team's winning strategy.

The following three levels of play are suggested:

Level 1 (Estimating probabilities)

Objective: 1) Students to observe which outcomes, sum on
the two dice, are possible and conclude that
these outcomes are not equally likely

2) Student.: to quantify the uncertainty, ie.
estimate the probabilities of each outcome

3) Students to develop the strategy Of select-
ing those positions which maximize their
probability of winning.

Procedure: The team whose chip is on the position with num-
ber equal to the sum on the two dice gets one



Note:

point. The team with the most points accumu-
lated after n (25) odd rolls of the dice wins
that game.

To reinforce winning strategies supply the teams
with one six and one eight -sided dice -- or a 12
and a 20-sided dice and a different board! To
expose a non-optimal strategy change teams to
play against a team with the optimal strategy.

Level 2 (Random variables and Expected values)

Objective: 1) Students to discover the concept of random
variables.

Procedure:

Note:

2) Students to develop a winning strategy based on
the concept of expectation value, Ie. a set of
positions such that the sum of products (of
probability and points scored) is greater than
that for the opposing team.

The team's whose chip is on the position with
number equal to the sum on the two dice gets the
points indicated below the chip. The board
illustrated above shows 2 points for a sum of
six, 4 points for a sum of nine, etc. The teamwith the most points after 25 rolls of the dice
wins the game. Follow the procedures outlined inlevel 1.

I have a number of boards, each with a different
sequence of points. By switching boards one caneither reinforce an optimal strategy or expose
one which is not optimal.

Level 3 (The effects of changing the number of rolls or trials)

Objective: Students experinent'to show that as the number of
trials is in a gam:, the probability of
winning the game with an optimal strategy is
increased.

Procedure: The game is repeated 20 times for a fixed
optimal stragegy and n rolls of the dice
where

n 1

then n a 3
then n = 5
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From these results Th.!. stud,:nes nct:mnte the
probability of win:ling in each case ,a1 plot
these vermin n. The probability of winning the
game in 2C rolls should increase h'.1 n
increases.

The reason for this is that it is an npplicatlon
of the binomial distriaution with the following
properties:

1) n identical trials, ie. n roils of the pair of
dice (for this game we choose n odd)

2) each trial results in one of two outcomes, Ie.
a loss if the total on the lice is not aqua:
to one of the positions of the team's cnip

3) probability of succera, p, in a sinDle trial
remains the same from trial to trial, 1.t. the
chips are tico: reset between rolls, probabOlty
of failure q = 1-p

4) trials are independent, Ie. the result of one
roll does not depend on that obtained in pre-
vious rolls.

Then probability of exactly x success is given hy
x n-x

C(n,x) P q

In this experiment we are intere. md in the probability of get-
ting more than holt of the points :c win the tam. is.

C(n,x)px .111-m
fnl

4.1y1

where 141 is the omallest integer greater than

in odd by choice)

Students with a knowledge of the Binomial probability dis-
tribution can verify that their values are close to the theoreti-
cal ones, viz.,
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n= 1 --- P= I C(1.1) p (40 = P

x=1

3

n= 3 --- Pc 1 C(3,x) p
x
q
3-x

= 3p
2
q p

3

xc2

5

n = 5 --- Pa E C(5,x) p
x
q
5-x

10p q
2

5p
4q p

5

x=3

Positioning the chips in the most obvious position for a win, the

starting team will have

P-36
21

giving for n = 1

giving for n c 3

giving for n = 5

P = 0.5833

P = 0.6238

P c 0.6534
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1. The Beginning

My main thesis' here today is that the later stages of
our evolution, i.e., the distinctively human stages, have been
mental rather than physical in nature.

We also note that there is potential danger in any
evolutionary change for any species. The change may bring pew
opportunities or it may bring unexpected risks. Some species,
such as the cockroaches, have played it safe by finding a nice
niche and staying put in it for a very long time. We humans have
been less "lucky" or less "sensible".

In his well-known and highly speculative book entitled Th&

(1976) Julian Jaynes, a psychologist at Princeton, tries to show
some of the gains and losses associated with the development of
human language and human consciousness. For example, he claims
that a schizophrenic-type of condition was associated with
consciousness and language in pre-historical and early historical
man. In particular, be claims that the experience of bearing
"disembodied" voices was very common and led to the development of
mysticism and religion, prophecy and poetry, as well as to such
modern residue as hypnotism and mass "hysteria" (i.e., mass enthusiasm

or mass ecstacy). Jaynes speculates that as language functions
bee-me localized in one hemisphere of the human brain, usually in
the left hemisphere, schizophrenic-like consciousness became much
less common in our species, and religion became institutionalized
or fossilized because most of us could no longer hear the voices
of the gods and angels, the devils and demons. Jaynes' bold
attempt to exp.cin our most recent evolution is very stimulating
but it bas been criticized for being too speculative. However, I
would like to claim that we need to be even more bold and speculative

if we are to understand the dangerous and critical nature of our
most recent evolution.

Whereas Julian Jaynes attempted to link our purely human
evolution to a left-right specialization in the human brain I will
attempt to link it to a front-back specialization in the same
brain. Like Jaynes, I want to link our cerebral development to
the evolution of natural languages (the things we today call
English, French, Chinese, etc.) but I also want to link it to our
development of mathematical languages (the things we today call
arithmetic, algebra, geometry, etc.). From a pragmatic point of
view, we can regard natural languages as the tools we invented to
control one another and mathematical languages as the tools we
invented to control the rest of nature.2
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As a species ve have reached a unique point in the
evolution of life on this earth. Because of the awesome power of

mathematical languages, we have been able to create enough nuclear
weapons to wipe out all (or nearly all?) forms of life on this
plaset.3 Because of the equally awesome power of natural languages,
one man in the U.S.A. or the Soviet Union can speak the few English

or Russian words needed to begin the nuclear holocaust. Obviously,

we have replaced Jaynes' individual schizophrenia of "primitive"

van by the collective schizophrenia of "advanced" man.4

2. The 4iddle

When we compare ourselves with our closest primate cousins
we are immediately struck by three major differences--two in our
behaviour plus one in our brains. One major behavioural difference
is that we have =tuna language, defined by the famous American
linguist Noam Chomsky as a system that connects sound to meaning
xie syntax. Syntax is that wonderful human invention which allows
us to talk or write forever despite a small vocabulary and an even
smaller intelligence! Since early human language was spoken but

not written we have no direct evidence about its nature.5 Our

oldest samples of writing reveal languages that are already highly
developed. Moreover, along with the development of writing comes
the development of early mathematics6, which we can provisionally
define as the language of quantification. It would appear, then,

that our mathematical abilities emerged in parallel with our
language abilities during the purely human stages of our evolution.
With the introduction of proof into mathematics,attributed to the
Greek known as Pythagoras (6th century B.C.) this specialized
human language became the major tool of science and technology,
the second major behavioural feature that distinguishes us from
our primate cousins. If we look for a third major feature that
might underlie and help explain the other two, we can find it in
the distinctive frontal lobes of the human brain. It is those
highly developed frontal lobes that give us our more prominent
foreheads as compared to the receding, sloping foreheads of our
primate cousins.

But what goes on in those frontal lobes of ours that
makes us so different from all other primates, from all other
mammals, from all other animals? Surprisingly enough, natural

language functions are not all localized in the frontal lobes.?
In fact, much of the human frontal lobes are made up of the so-
called 'silent areas' of the cortex. These are areas "which, on
stimulation, evoke neither sensory nor motor response" (Smith
1961: 193). Smith feels that the rain function of the human
frontal lobes is the integration of perceptions and knowledge,
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particularly the time-integration of separate events that gives
rise to our perceptions of cause and effect.8 Smith admiringly
quotes an 1824 entry in Emerson's journal: "Man is an animal that
looks before and after." This remarkable insight of the then
youthful Emerson explains the central paradox of human nature;
that is, it explains why we are simultaneously the most rational
sag the most irrational of all creatures. When we compare ourselves
to other mammals psychologically we are struck by our peculiar
inability to enjoy the here and now. We are forever regretting
the past and fearing the future. We note that our greatest buildings
(temples, pyramids, cathedrals) used to be erected to those very
regrets and worries, sins and hopes. We note too that the insatiable
human sacrifices of the Aztecs were not motivated by ferocity but
by fear: they were meant to keep nature operating in the future as
it had done in the past. As our frontal lobes and (somewhat
later?) our natural languages developed, our instincts were gradually
replaced by learning and memory, by reasoning and faith. But this
laid an intolerable burden of choice and responsibility on the
individual. This must be the basis of our myths about our expulsion
from the Garden of Eden, from a state of innocence and grace into
a knowledge of good and evil. Never again could we be as "natural"
in our behaviour as the other mammals seem to be.

Perhaps man's most heroic and rational response to this
intolerable pressure was to invent mathematics. Natural languages
already contained most of the raw materials needed for basic
mathematics.9 For example, in Modern English we can see the
prototypes of set theory18 in the words that linguists call determiners
and quantifiers (Stockwell et al 1973: 65-160). Such words
underlined in the examples given below:

books -- the universal set (of books)

some

go books -- the empty set

1 book, the book -- the unit set

lag books --. a random subset

books -- a non-random subset

e tc.

are

The prototype of the finite/infinite distinction may be seen in
our distinction between ("finite") COUNT nouns and ("infinite")
MOSS nouns. Examples are given in the table below:
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COUNT11 MASS

a cup some sugar
a shovel some snow
an apple some fruit
SD egg some butter

More important, perhaps, was the existance of logical connectives12
in natural languages. In Modern English we find words such as the
following (Kemeny et al. 1966: 12):

and for addition (conjunction)

a for alternation (disjunction)

got for denial (negation)

IL ( M) for dependency (conditional)

The most important of these logical connectives seems to be the IL
(conditional) type. This is because the birth of "real" mathematics
coincides with the explicit recognition of the methodology of
proof, associated above with the sixth century B.C. Greek philosopher,
mystic, and mathematician called Pythagoras. As E.T. Bell (1937:
20) has pointed out, "Before Pythagoras it had not been clearly
realized that mud must proceed from gssumetions. Pythagoras,
according to persistent trcdition, was the first European to
insist that the Wm, the autillatga, be set down first in
developing "geometry and that the entire development thereafter
shall proceed by applications of close deductive reasoning to the
axioms." Pythagoras himself is. not likely to haie discovered that
the square on the hypotenuse of a right- angled triangle equals the
sum of the squares on the other two sides. This fact was apparently
well known to the priests and land surveyors of Egypt and Babylon,
both of which Pythagoras visited. His great contribution was to
prove Wax this fact hig to be true. The proof(s), using deductive
reasoning, Owed that this theorem had to be true for all right-
angled triangles drawn on the surface of a plane. This was quite
different from inductive reasoning based, forexample, on measurements
taken from a hundred specific triangles. Deductive proof guaranteed
that not even the gods themselves could change this law of nature.
Hence, it gave the Greeks a confident sense of security so that
they, unlike the Aztecs, did not have to perform sacrifices in an
attempt to preserve the laws of nature.
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It was gradually realized in mathematics and the sciences
that one did not have to start with postulates that conformed to
one's sense perceptions or one's common sense. This led to
developments such as geometries of spaces with more than three
dimensions. This also allowed Einstein to assume that the velocity
of light is constant for all observers, a postulate that violates
common sense. But this counter-intuitive assumption allowed him
to conclude tbat E a ac before experimental evidencf was available
to show the relationship between energy and matter in nuclear
reactions. More recently, I have read of discontinuities in space
called "strings" (Angier 1986). These may be relics left over
frothe Big Bang that are capable of bending light more radically
than even the most massive collections of "solid" or "real" matter.
Though we cannot observe such strings "directly", we (i.e., a few
theoretical physicists) can describe them mathematically. Ultimately,

then, our understanding of the universe, at either the macrocosmic
or microcosmic extremes, fades away beyond our senses into the
abstractions of mathematics. This means that mathematics defines
the limits of our "knowable" universe.

Our provisional definition of mathematics above was the
language of quantification. We can now amend that definition by
calling it the language(s) of quantified iffiness.

3. The End

Let me try to recspituate. The development of the
distinctive frontal lobes of the human brain and the concomitant
development of natural language cut our species. free from the
control of instincts and forced it to rely on accumulated experience
(i.e., memory) and on the uncertainties of inductive reasoning.
Some human groups tried to solve the memory problem by developing
writing. Some tried to solve the problem of inductive uncertainty
by developing methods of deductive reasoning in logic and mathematics.
The rapid advances made in European mathematics and science in the
seventeenth and eighteenth centuries by men like Descartes, Newton,
and Leibniz led to the remarkable optimism and self-confidence of
Western Min in the eighteenth century. Wa managed to make it
through the nineteenth century fairly safely, but the twentieth
century destroyed our faith in both men and mathematics. On the
human side we have seen two world wars and several attempts at
genocide. We have also seen about a quarter of the human race
suffering from acute starvation, chronic hunger, or crippling
malnutrition. Between the two worid wars science and mathematics
also encounted their limitations. In 1927 Werner Heisenberg
published his Principle of Indeterainacy for physics. In 1931
Eurt Glidel showed that mathematical systems can never be complete,
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that mathematics contains insoluble problems. As William Barrett
wrote (1962: 39) "This means, in other Words, that mathematics can
never be turned over to a giant computing machine; it will always

be unfinished, and therefore mathematiciansthe human beings Who
construct mathematics --will always be in business." This good news

I bring youl

Where, then, can we go from here? If, as I have claimed,

natural languages and mathematical languages are the two most:
powerful tools, and therefore the most dangerous tools, that we
have developed should we not approach the teaching of both of them

with great care and caution? In particular, should we not be

teaching something about the origins, the development, and the

limitations of both natural and mathematical languages? Should we

not be discussing the ethics of their uses and misuses in the
history of our spocies? Is it not just as important to teach
students about them as it is to teach students to use them.
have known many students who treated mathematics as a kind of black

magic -- "If you do this and this you'll get the right answer, but don't

ask me whys" Would it not be better to teach primarily for
understanding" even if it meant teaching less? Wouldn't lets in

fact be more in this case? Wouldn't the above suggestions solve

some of the notorious problems of motivation in mathematics students,
since it would make the whole subject less dry and more meaningful?

Heaven knows that we have seen in this century some horrific
results of blind obedience and unreflecting faith. We now know

that enthusiasm and will are not enough to ensure the survival of

the human race. If we do not pause to assess ourselves we may
yell stampede over the brink like a herd of buffalo.

But most of all we must learn humility again. We must

relearn the joy of living within our limitations, of living here
and new, of being part of nature again. After all, a star scientist

is a much a product of nature as is a starfish! Let us not forget

the nobility and grubbiness of our "struggle into light."14 We

imagine our remote primate ancestors attempting to otand upright
on their hind legs so that they could better spot dangerous predators
at a safe distance. Now we have become the most dangerous predators

of all. Unless we can come to terms with our flaws vc are finished.

* * * * * * * * * *

The orally presented version of this paper ended at this

point. During the animated question period that followed I discovered
that some members of the audience wanted me to speculate a litt:e

about our possible futures. Well, then, here pest
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I do believe that there is some siie hope for the human race.
But it is a painful hope because it involves giving up some of our
most treasured illusions. And, as we have seen in South Africa and
elsewhere, people would sometimes rather die than surrender their
illusions, along with the powers and privileges supported by such
illusions. On a larger scale, we can observe the terrifying Star

Wars illusion in the U.S.A., whereby millions are being misled
into believing that their country can seal itself inside a safe
cocoon on this tiny planet. There is in fact nothing to indicate
that the Great (Space) Wall of America will provide better protection
than did the Great (Stone) Wall of China. The real issue here is
a psychological one--it is impossibly difficult for people to
abandon their illusions of safety and superiority. People do
indeed need myths as a source of motivation.

One lesson taught us by the twentieth century is that an
astonishing quantity of hi,msn energy15 is released by true belief.
A former member of the Hitler Youth movement once said to me:
"People just don't understand how beautiful it was to know that
you were right and everybody else was wrong, that you were superior
and everbody else inferiorl" Conversely, a lack of faith reduces
many of us to depression, inertia, and impotence. Even worse, we
note that the energetic true-believer is often morally inferior to
the lazy know-nothing. The great Irish poet W.B. Yeats summarized
this painful paradox of modern man when he wrote that "The best
lack all conviction while the worst/Are full of passionate
intensity."" Our hope, then, must lie with people who can act
without conviction, who can fight without faith, who can pray
without God.

Such people will require a rare steadiness of purpose
and a superior resistance to frustration.17 This is because
evolution generally proceeds not by abandonin; the old for the
new, but by building the new on top of the old.18 How thenare we
going to acc000date the old mammals that lie behind our human
frontal lobes? If we do NOT accomodate them, they are likely to
destroy us. We must give them their due because ithout their
evolutionary history we would not even exist. We must therefore
learn to love and admire our bodies and our unconscious minds in
the same "disinterested" way in which we so easily love the bodies
and the unselfconscious minds of other animals, for we too are
children of nature.

Nevertheless, our peculiar human consciousness in our
inescapable fate. We cannot ever return to pre-consciousness.
Our only hope is to go forward to to higher levels of consciousness."
We can get a better idea of where we might go only by learning
more about where we have been. There is therefore a special
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responsibility laid on the shoulders of us who are describers and
teachers of human languages, whether these languages be natural or
grammatical. We must show our ctudents that these languages are
the most powerful and beautiful tools ever developed by the human
mind. Our students should therefore learn to respect their power
while admiring their beauty. Above all, both we and our students
should try to improve these tools. Let us join T.S. Eliot in his
mature concern "To purify the dialect of the tribe/And urge the
mind to aftersight and foresight. o20

FOOTNOTES

1
This is a slightly revisal version of the paper which was

read at the conference. The revisions consist mainly of extended
conclusions and additional footnotee.

2
0f course, in controlling nature we also came to control

one another even more, through the development of weapons, "predatory"
economies, etc.

3
In addition to worrying Abe:a our relatively sudden end in

a nuclear war we can also worry about elowtr endings from nuclear
pollution, chemical pollution, overpopulation, famine, etc.

4
Compare the British psychiatrist R.D. Laing, who feels that

schizophrenic behaviour is the sanest response to living in e..

insane world (Papalia and Olds 1985: 545-6).

5
But see Hackett (1978) for s julicious weighing of the

several types of indirect evidence.

6
It is interesting to speculate on why mathematics developed

so "early" in our history. One reason was no doubt the development
of writing itself, which gave a new.permanence and weightiness to
language. Also, according to Guillaume (1984: 143) "Writing, more
than speech, obliterates the turbulence of cogitation." If this
Ls true, than writing would have led naturally to the reflectiveness,
reasoning, and generally clearer thinking needed for mathematics.
But perhaps more important was man's long history of precise hand-
eye coordination, well recorded in his developing skills of tool-
making. Even sore intriguing is Bockett's hypothesis :1978: 295-
301) that the primary medium of Lumen prelanguage consisted of
manual signs (gestures) rather than vocal sounds. If Hackett is
correct, then this would help explain the "earliness" of mathematical

development in our species. Uockett's theory is especially relevant
for geometry, since a complex system of hard signals requires
rapid and precise neuromuscular controt of the hand as well as
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equally rapid and precise visual perceptions of the resulting handrovementz in space. Both these abilities no doubt unlie bothwriting and geometry.

7
Besides the supplemental motor area, there are two mainlocalizations of language in the human brain

(usually stronger inthe left hemisphere).
The main speech

production centre, calledBroca'. area, is in the (posterior inferior
part of the) frontallobe but the main speech =main centre, called Wernicke'aarea, is found in the

(posterior) temporal and parietal lobes.This suggests that "language"
perception might have preceded"speech" production in our evolution. In other words, it tends tosupport Bockett's

speculation (1978: 295-301) that the primarystadium of human prelanguage
might have been sophisticated handgestures rather than vocal sounds. In any case, the availableevidence indicates that we achieved fine motor control over ourhands well before we achieved similar emntrol

over such vocal organsas the lips, tongue, and larynx. Note to that we cannot teachapes to speak but we can teach them to use "prelanguage" thatemploys hand gestures.
In addition, human beings who are deaf cancommunicate rapidly and fluently through the use of hand signalsystems. Moreover, it has been demonstrated that apes can learnto use (at least part of) the Ameslan

(American sign language)system that is commosly
taught to the deaf in North America (Beckett1978: 277-82).

SThe crucial role of the frontal lobes for human behavioris demonstratedby
the severe "side" affects

of prefrontal lobotomies.Mese surgical operations (commonly
carried out in the forties andfifties to relieve

severe pain and some psychoses)
often leftpatients "as apathetic

shells of their former selves; some 5percent developed convulsions:
and more than 6 percent died"(Papalia and Olds 1985; 569).

9
This claim has been

advanced by several writers in thepast. Tor example, the French theoretical
linguist Gustave Guillaume(1883-1960) claimed that language "is the pre-science of science"and that "the loftiest

speculations of science are built on thesystematized representations"
of language (Guillaume 1984: 146).Guilleurealsoarkes

several insightful comparisons
between mathematicsand natural language.

10
See, for example, Kemeny et al (1966).

11
As a local dialectologist

I note that (singular) COUNTnouns in Vernacular Newfoundland
English are often preceded byeither (or one of its "varian-s" such

as nilr or La) rather than
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by a. or ea. Thus one commonly hears sentences auch as: *Do you

have either shovel with you?"

12A1l natural languages seen to be fairly equal in the
subtleties of their LEXICAL and GIAMMATICAL distinctions but some
may be superior in War LOGICAL distinctions. To illustrate this

ternary division we can break the English sentence "The cow drinks
if she is thirsty" into nine linguistic forma (called morphemes by
linguists). Of these nine, three are lexical (gag, Aria, thirst);
five are grammatical (al, a on the verb. Map 1.16 and =1 on the
adjective) and one is logical (M.

13Mere I recall my ova collision with geometry on entering
high school. The teacher provided no introduction to the subject
at all but began abruptly with the proof of a theorem. I was

utterly lost for several days until I happened to reed the excellent
preface to our textbook. The result was that I "fell in love"
with geometry and used to tutor other members of my own classes in
that subject throughout my high school years.

14This phrase is from the English poet John Clore (1793-

1864), wtsse own life epitomized the difficulties of this struggle.
See Tom Dewe'a (1983) poem of empathy dedicated to John Clare.

150f all the pioneers of modern depth psychology it was
probably Carl Gustav Jung (1875-1961) who had the best insights
into this crucial problem of the "availability" of psychic energy.
See, for example, the summary of Jung's theories in Woodworth and
Sheehan (1964). The most pervasive mental problem of modern times
is depression, a problem which can be seen as the inability to
release one's psychic energy. This block is the mental equivalent
of physical paralysis.

16
From his poem cr.titliod "The Second Coming".

17For example, every day of my life I want to malign,
maim, or murder at lesst one other person. There is nothing
unique about my feelings. Compare the Quebec policeman Serge
Lefebvre, vLo shot two of his fellow officer.. He said that he
turned of a life of crime "because he ws: frustrated with his job"
(71aLClobe and Nail, Thursday, 10 July 1986, p. A8). It is certainly

true that the incressing specialization, regulation, monotony, and
mechanization of modern employment is a source of.great frustration
to many people. Jsrrett (1962) attributes such nihilistic urges
to the feelings of powerlessness and hopelessness that have accompanied

the general losa of faith experienced by modern Meats= Nan. We

note that the recent weakening of the church in the province of
Quebec has been accompanied by a rapid rise in the rate of suicide.
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18See Chapter 12 of Homer W. Smith (1961) and especially

p. 191. ,.
"Rote that the whole thrust of modern depth psychology

(and Is psychotherapies based on it) is towards higher levels of
consciousness, which may allow us to transcend our personal problems

or L lesst enable us to view them with a tolerable or livable

degree of mental pain.

20From T.S. Eliot's poem "Little Gidding" in the fur Quartets.

London; Faber and Faber, 1944, p. 54.

After this my doily fix of poetry, I find it possible to

end this paper on an upbeat note, or at least on an upbeat footnote.
The most hopeful sign to me im that we may now be starting to see
ourselves as the protectors rather than the exploiters of our
planet. For example, the defense capability of our space programs
could be redirected to "dealing with thrests from space" (Lemonick
1986) such as any dangerously large asteroid found to be on a

collision course with planet earth.
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GENDER RELATED DIFFEFENCES IN LEARNING OUT-COMES

Erika Kuendiger
University of Windsor

A) Cognitive Learning Outcomes

In Northern America the tonic "Gender and Mathematics" was

discovered so be important during the early 70th. From the vary

beginning the Question " To what egtend do boys outperform girls

in mathematical achievement ?" was and still is of particular

importance to researchers and to the public as achievement often

is looked upon as the one essential learning outcome.

By now an extensive body of research is available. Depending on

the reseacher, results are summed up quite differently ,e.g.

- Bendow and Stanley (198.3) come to the conclusion that by age
13 there is a significant difference in mathematical ability

between the sexes, and that it is especially pronounced
among high-scaring exceptionally gifted students, with boys

outnumbering girls 13 to 1:

- according to 9ennema and Carpenter (1982) very little sax

related difference egist, if any; and

- summing up research carried out in nine countries.

Schildkamp-4-eendiger (1982) concludes that se': - related

differences in achievement were found to vary considerably
both within and among countries.

The Second International Matnematics Study I SIMS ' provides

achievement results of students from twenty countries at the

Population A level, that corresponds to grade eight in Canada.

These results have been analyzed as to seL related differences

using efferent amoroacnes (see Hanna .1, )'uendiger 1,7,66 for further

details:.

Overall the =eta reveal that seg-related azritevement differences.
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mostly ao not occur. If they occur. they may be as well in favour

of girls as of boys. Significant difference: by country and

subtests range between 4-E% to -7% only .

B) Attitudinal Learning Outcomes

In trying to explain sex-related achievement differences and

course-taking behaviaur, modells have been develootd that stress

the importance of the attitudinal aspects of the 1Larnin

Process, in Particular the impact of venereal believes about the

appropriateness of women being involved in mathematics (Eccles

1986, Kuendiger 1984).

The SIMS contains a whole Questionnaire focusing on students'

attitudes towards mathematics. The scale "Gender Stereotyping" is

directly related to the above mentioned aspect. The graohs below

display the percentages of extrem resoonses for each of the four

items by country. The percentages of female resOonses are Plotted

against the difference of female minus male percentages. It has

to be noted that 3 of the 4 items are phrased negatively; for

these items the categories "disagree" and "strongly disagree"

have been considered: corespondingly the categories "agree" and

"strongly agree" have been used for the Positively phrased item.

In all graphs the line indicating egtreme responses of :0% of the

boys has been entered.

With the egcePtion of Swaziland the graphs reveal some

astonishing regularities: for all other counties the differences

between extreme responses is 9% or more with girls having the

more agtreme responses. Chi 2 - tests done for each item and and
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MEN BETTER SCIENTISTS AND ENGINEERS
PERCENT DISAGREE AND STF:ONCL?" DISAGREE
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WOMAN NEEDS CAREER AS M0-CET AS MAN
PERCENT AGREE .4D STRONGLY AGREE
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3017S YEED TO ECNOFF MORE MATH
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BOYS HAVE MORE NATURAL MATH ABILITY.
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country secerately reveal a significant relationshiobetween sex

and resccnd oattern (= < o.00l).

Swaziland t the only country in which boys hold a more extreme

position than ;iris Mcreover. only the answers to the items

"boys have more natural ability in math" and "boys need more math

than girls" are significantly related to sex ( P < 0.001).

Future insoection of the attitude scales will reveal as to what

degree regularities in the attitudinal learning outcomes aooear

within :Funtries andfor between countries.
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